Advanced Search
MyIDEAS: Login to save this paper or follow this series

Estimation, Learning and Parameters of Interest in a Multiple Outcome Selection Model

Contents:

Author Info

  • Tobias, Justin

Abstract

We describe estimation, learning and prediction in a treatment-response model with two outcomes. The introduction of potential outcomes in this model introduces four cross-regime correlation parameters that are not contained in the likelihood for the observed data and thus are not identified. Despite this inescapable identification problem, we build upon the results of Koop and Poirier (1997) to describe how learning takes place about the four non-identified correlations through the imposed positive definiteness of the covariance matrix. We then derive bivariate distributions associated with commonly estimated ``treatment parameters'' (including the Average Treatment Effect and effect of Treatment on the Treated), and use the learning that takes place about the non-identified correlations to calculate these densities. We illustrate our points in several generated data experiments and apply our methods to estimate the joint impact of child labor on achievement scores in language and mathematics.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Iowa State University, Department of Economics in its series Staff General Research Papers with number 12480.

as in new window
Length:
Date of creation: 01 Jan 2006
Date of revision:
Publication status: Published in Econometric Reviews 2006, vol. 25, pp. 1-40
Handle: RePEc:isu:genres:12480

Contact details of provider:
Postal: Iowa State University, Dept. of Economics, 260 Heady Hall, Ames, IA 50011-1070
Phone: +1 515.294.6741
Fax: +1 515.294.0221
Email:
Web page: http://www.econ.iastate.edu
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Djebbari, Habiba & Smith, Jeffrey, 2008. "Heterogeneous impacts in PROGRESA," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 64-80, July.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:isu:genres:12480. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Bridges) The email address of this maintainer does not seem to be valid anymore. Please ask Stephanie Bridges to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.