IDEAS home Printed from https://ideas.repec.org/p/ipt/iptwpa/jrc85872.html
   My bibliography  Save this paper

CAPRI long-term climate change scenario analysis: The AgMIP approach

Author

Listed:

Abstract

The current paper investigates the long-term global effects of crops productivity changes under different climate scenarios and the impact of biofuels expansion using the Common Agricultural Policy Regionalised Impact (CAPRI) model. These analyses are conducted in the framework of the AgMIP project (Agricultural Model Intercomparison and Improvement Project). The results indicate that globally there will be both winners and losers, with some regions benefitting from agricultural production adjustment as a result of climate change whilst most regions suffering losses in production and consumption. Biofuel expansion leads to land relocation away from crop agricultural commodity production to new energy crops which is reflected in lower production levels of agricultural commodities and higher agricultural prices.

Suggested Citation

  • Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Research Reports JRC85872, Joint Research Centre.
  • Handle: RePEc:ipt:iptwpa:jrc85872
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/handle/JRC85872
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hermann Lotze-Campen & Martin Lampe & Page Kyle & Shinichiro Fujimori & Petr Havlik & Hans Meijl & Tomoko Hasegawa & Alexander Popp & Christoph Schmitz & Andrzej Tabeau & Hugo Valin & Dirk Willenbocke, 2014. "Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 103-116, January.
    2. Schimmelpfennig, David & Lewandrowski, Jan & Tsigas, Marinos & Parry, Ian, 1996. "Agricultural Adaptation to Climate Change: Issues of Longrun Sustainability," Agricultural Economic Reports 262033, United States Department of Agriculture, Economic Research Service.
    3. Piroli, Giuseppe & Ciaian, Pavel & Kancs, d'Artis, 2012. "Land use change impacts of biofuels: Near-VAR evidence from the US," Ecological Economics, Elsevier, vol. 84(C), pages 98-109.
    4. Darwin, Roy & Tsigas, Marinos E. & Lewandrowski, Jan & Raneses, Anton, 1995. "World Agriculture and Climate Change: Economic Adaptations," Agricultural Economic Reports 33933, United States Department of Agriculture, Economic Research Service.
    5. B.C. O'Neill & T Carter & Kl Ebi & J. Edmonds & Stéphane Hallegatte & E. Kemp-Benedict & E. Kriegler & L. Mearns & R. Moss & K. Riahi & B. van Ruijven & D. van Vuuren, 2012. "Meeting Report of the Workshop on The Nature and Use of New Socioeconomic Pathways for Climate Change Research," Working Papers hal-00801931, HAL.
    6. Ciaian, Pavel & Kancs, d'Artis, 2011. "Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 326-348, January.
    7. Sherman Robinson & Hans Meijl & Dirk Willenbockel & Hugo Valin & Shinichiro Fujimori & Toshihiko Masui & Ron Sands & Marshall Wise & Katherine Calvin & Petr Havlik & Daniel Mason d'Croz & Andrzej Tabe, 2014. "Comparing supply-side specifications in models of global agriculture and the food system," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 21-35, January.
    8. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    9. Shrestha, Shailesh & Ciaian, Pavel & Himics, Mihay & Van Doorslaer, Benjamin, 2013. "Impacts of Climate Change on EU Agriculture," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 16(2), pages 1-16, September.
    10. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    11. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    12. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shrestha, Shailesh & Hennessy, Thia & Abdalla, Mohamed & Forristal, Dermot & Jones, Michael B., 2014. "Determining Short Term Responses of Irish Dairy Farms under Climate Change," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(03), pages 1-13, September.
    2. Syp, Alina, 2015. "Projekcja Zmian Wielkości Plonów Pszenicy W Polsce I Unii Europejskiej W Latach 2030 I 2050 Na Podstawie Modelu Capri," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2015(2), April.
    3. Fernández, Francisco J. & Blanco, Maria, 2014. "Integration of biophysical and agro-economic models to assess the economic effects of climate change on agriculture: A review of global and EU regional approaches," Economics Discussion Papers 2014-48, Kiel Institute for the World Economy (IfW Kiel).
    4. Fernández, Francisco J. & Blanco, Maria, 2015. "Modelling the economic impacts of climate change on global and European agriculture: Review of economic structural approaches," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-53.
    5. Shrestha, Shailesh & Hennessy, Thia & Abdalla, Mohamed & Forristal, Dermot & Jones, Michael B., 2014. "Determining Short Term Responses of Irish Dairy Farms under Climate Change," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    2. van der Mensbrugghe, Dominique & Jeffrey C. Peters, 2020. "Volume Preserving CES and CET Formulations," GTAP Working Papers 6160, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    3. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    4. Hermann Lotze-Campen & Martin Lampe & Page Kyle & Shinichiro Fujimori & Petr Havlik & Hans Meijl & Tomoko Hasegawa & Alexander Popp & Christoph Schmitz & Andrzej Tabeau & Hugo Valin & Dirk Willenbocke, 2014. "Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 103-116, January.
    5. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    6. Fernández, Francisco J. & Blanco, Maria, 2015. "Modelling the economic impacts of climate change on global and European agriculture: Review of economic structural approaches," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-53.
    7. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    8. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    9. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    10. Mason-D'Croz, Daniel & Sulser, Timothy B. & Wiebe, Keith & Rosegrant, Mark W. & Lowder, Sarah K. & Nin-Pratt, Alejandro & Willenbockel, Dirk & Robinson, Sherman & Zhu, Tingju & Cenacchi, Nicola & Duns, 2019. "Agricultural investments and hunger in Africa modeling potential contributions to SDG2 – Zero Hunger," World Development, Elsevier, vol. 116(C), pages 38-53.
    11. Zhao, Xin & Calvin, Katherine V. & Wise, Marshall A. & Iyer, Gokul, 2021. "The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 1-17.
    12. Lanz, Bruno & Dietz, Simon & Swanson, Tim, 2018. "The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment," Ecological Economics, Elsevier, vol. 144(C), pages 260-277.
    13. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    14. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    15. Dirk Willenbockel & Claudia Ringler & Nikos Perez & Mark Rosegrant & Tingiu Zhu & Nathanial Matthews, 2016. "Climate Policy and the Energy-Water-Food Nexus: A Model Linkage Approach," EcoMod2016 9746, EcoMod.
    16. Abeysekara, Walimuni Chamindri Sewanka Mendis & Siriwardana, Mahinda & Meng, Samuel, 2023. "Economic consequences of climate change impacts on the agricultural sector of South Asia: A case study of Sri Lanka," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 435-450.
    17. Frank, Stefan & Witzke, Heinz-Peter & Zimmermann, Andrea & Havlík, Petr & Ciaian, Pavel, 2014. "Climate change impacts on European agriculture: a multi model perspective," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 183025, European Association of Agricultural Economists.
    18. Richard S.J. Tol, 2018. "Energy and Climate," Working Paper Series 1618, Department of Economics, University of Sussex Business School.
    19. A. V. Pastor & A. Palazzo & P. Havlik & H. Biemans & Y. Wada & M. Obersteiner & P. Kabat & F. Ludwig, 2019. "The global nexus of food–trade–water sustaining environmental flows by 2050," Nature Sustainability, Nature, vol. 2(6), pages 499-507, June.
    20. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.

    More about this item

    Keywords

    Climate Change; Lung-run modelling; Agriculture; Productivity; Biofuels;
    All these keywords.

    JEL classification:

    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:iptwpa:jrc85872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.