IDEAS home Printed from https://ideas.repec.org/p/han/dpaper/dp-660.html
   My bibliography  Save this paper

Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration

Author

Listed:
  • Becker, Janis
  • Leschinski, Christian
  • Sibbertsen, Philipp

Abstract

This paper derives a multivariate local Whittle estimator for the memory parameter of a possibly long memory process and the fractional cointegration vector robust to low frequency contaminations. This estimator as many other local Whittle based procedures requires a priori knowledge of the cointegration rank. Since low frequency contaminations bias inference on the cointegration rank, we also provide a robust estimator of the cointegration rank. As both estimators are based on the trimmed periodogram we further derive some insights in the behaviour of the periodogram of a process under very general types of low frequency contaminations. An extensive Monte Carlo exercise shows the applicability of our estimators in finite samples. Our procedures are applied to realized betas of two American energy companies discovering that the series are fractionally cointegrated. As the series exhibit low frequency contaminations, standard procedures are unable to detect this relation.

Suggested Citation

  • Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  • Handle: RePEc:han:dpaper:dp-660
    as

    Download full text from publisher

    File URL: http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-660.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    2. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    3. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    4. Hendry, David F. & Massmann, Michael, 2007. "Co-Breaking: Recent Advances and a Synopsis of the Literature," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 33-51, January.
    5. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    6. Marinucci, D & Robinson, Peter M., 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    9. Nielsen, Morten Orregaard, 2007. "Local Whittle Analysis of Stationary Fractional Cointegration and the ImpliedRealized Volatility Relation," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 427-446, October.
    10. Fabrizio Iacone, 2010. "Local Whittle estimation of the memory parameter in presence of deterministic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 37-49, January.
    11. Robinson, P.M., 2008. "Diagnostic testing for cointegration," Journal of Econometrics, Elsevier, vol. 143(1), pages 206-225, March.
    12. Shimotsu, Katsumi, 2012. "Exact local Whittle estimation of fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 169(2), pages 266-278.
    13. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    14. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    15. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    16. Kellard, Neil M. & Jiang, Ying & Wohar, Mark, 2015. "Spurious long memory, uncommon breaks and the implied–realized volatility puzzle," Journal of International Money and Finance, Elsevier, vol. 56(C), pages 36-54.
    17. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    18. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
    19. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series 420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    21. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    22. Philip Bertram & Robinson Kruse & Philipp Sibbertsen, 2013. "Fractional integration versus level shifts: the case of realized asset correlations," Statistical Papers, Springer, vol. 54(4), pages 977-991, November.
    23. Zhongjun Qu, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
    24. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    25. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    26. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    27. Bent Jesper Christensen & Paolo Santucci de Magistris, 2010. "Level Shifts in Volatility and the Implied-Realized Volatility Relation," CREATES Research Papers 2010-60, Department of Economics and Business Economics, Aarhus University.
    28. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    29. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    30. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    31. Brown, B. M., 1974. "Generalized Wald equations in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 2(4), pages 349-357, October.
    32. Adam McCloskey & Pierre Perron, 2012. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Working Papers 2012-15, Brown University, Department of Economics.
    33. Igor Viveiros Melo Souza & Valderio Anselmo Reisen & Glaura da Conceição Franco & Pascal Bondon, 2018. "The Estimation and Testing of the Cointegration Order Based on the Frequency Domain," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 695-704, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    2. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    3. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    4. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    5. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    6. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    7. Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Marina Balboa & Paulo M. M. Rodrigues & Antonio Rubia & A. M. Robert Taylor, 2021. "Multivariate fractional integration tests allowing for conditional heteroskedasticity with an application to return volatility and trading volume," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 544-565, August.
    9. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    10. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    11. Kellard, Neil M. & Jiang, Ying & Wohar, Mark, 2015. "Spurious long memory, uncommon breaks and the implied–realized volatility puzzle," Journal of International Money and Finance, Elsevier, vol. 56(C), pages 36-54.
    12. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    13. Katarzyna Łasak & Carlos Velasco, 2015. "Fractional Cointegration Rank Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 241-254, April.
    14. Marcel Aloy & Gilles Truchis, 2016. "Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems and the Co-persistence Analysis of Stock Market Realized Volatilities," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 83-104, June.
    15. Leschinski, Christian & Sibbertsen, Philipp, 2017. "Origins of Spurious Long Memory," Hannover Economic Papers (HEP) dp-595, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    17. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    18. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.
    19. Gilles de Truchis & Elena Ivona Dumitrescu & Florent Dubois, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," EconomiX Working Papers 2019-15, University of Paris Nanterre, EconomiX.
    20. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.

    More about this item

    Keywords

    Multivariate Long Memory; Fractional Cointegration; Random Level Shifts; Semiparametric Estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Heidrich, Christian (email available below). General contact details of provider: https://edirc.repec.org/data/fwhande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.