Advanced Search
MyIDEAS: Login to save this paper or follow this series

Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends

Contents:

Author Info

Abstract

We propose estimators of the memory parameter of a time series that are robust to a wide variety of random level shift processes, deterministic level shifts and deterministic time trends. The estimators are simple trimmed versions of the popular log-periodogram regression estimator that employ certain sample size-dependent and, in some cases, data-dependent trimmings which discard low-frequency components. We also show that a previously developed trimmed local Whittle estimator is robust to the same forms of data contamination. Regardless of whether the underlying long/shortmemory process is contaminated by level shifts or deterministic trends, the estimators are consistent and asymptotically normal with the same limiting variance as their standard untrimmed counterparts. Simulations show that the trimmed estimators perform their intended purpose quite well, substantially decreasing both finite sample bias and root mean-squared error in the presence of these contaminating components. Furthermore, we assess the tradeoffs involved with their use when such components are not present but the underlying process exhibits strong short-memory dynamics or is contaminated by noise. To balance the potential finite sample biases involved in estimating the memory parameter, we recommend a particular adaptive version of the trimmed log-periodogram estimator that performs well in a wide variety of circumstances. We apply the estimators to stock market volatility data to find that various time series typically thought to be long-memory processes actually appear to be short or very weak long-memory processes contaminated by level shifts or deterministic trends.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.brown.edu/Departments/Economics/Papers/2012/2012-15_paper.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Brown University, Department of Economics in its series Working Papers with number 2012-15.

as in new window
Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:bro:econwp:2012-15

Contact details of provider:
Postal: Department of Economics, Brown University, Providence, RI 02912

Related research

Keywords: long-memory processes; semiparametric estimators; level shifts; structural change; deterministic trends;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Katsumi Shimotsu, 2006. "Simple (but effective) tests of long memory versus structural breaks," Working Papers 1101, Queen's University, Department of Economics.
  2. Yang K. Lu & Pierre Perron, 2008. "Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model," Boston University - Department of Economics - Working Papers Series wp2008-012, Boston University - Department of Economics.
  3. Fabrizio Iacone, 2010. "Local Whittle estimation of the memory parameter in presence of deterministic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 37-49, 01.
  4. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
  5. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(01), pages 44-79, February.
  6. Hurvich, Clifford & Lang, Gabriel & Soulier, Philippe, 2005. "Estimation of Long Memory in the Presence of a Smooth Nonparametric Trend," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 853-871, September.
  7. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
  8. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  9. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
  10. Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
  11. Haldrup, Niels & Nielsen, Morten Oe., . "Estimation of Fractional Integration in the Presence of Data Noise," Economics Working Papers 2003-10, School of Economics and Management, University of Aarhus.
  12. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
  13. Per Frederiksen & Frank S. Nielsen & Morten Ørregaard Nielsen, 2008. "Local polynomial Whittle estimation of perturbed fractional processes," CREATES Research Papers 2008-29, School of Economics and Management, University of Aarhus.
  14. Garcia, R. & Perron, P., 1994. "An Analysis of the Real Interest rate Under Regime Shifts," Cahiers de recherche 9428, Universite de Montreal, Departement de sciences economiques.
  15. Iliyan GEORGIEV, 2002. "Functional Weak Limit Theory for Rare Outlying Events," Economics Working Papers ECO2002/22, European University Institute.
  16. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
  17. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  18. Juan J. Dolado & Jesus Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona Graduate School of Economics.
  19. Perron, P, 1988. "The Great Crash, The Oil Price Shock And The Unit Root Hypothesis," Papers 338, Princeton, Department of Economics - Econometric Research Program.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Rasmus Tangsgaard Varneskov & Pierre Perron, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," CREATES Research Papers 2011-26, School of Economics and Management, University of Aarhus.
  2. Pierre Perron & Yohei Yamamoto, 2011. "Estimating and Testing Multiple Structural Changes in Linear Models Using Band Spectral Regressions," Boston University - Department of Economics - Working Papers Series WP2011-049, Boston University - Department of Economics.
  3. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, School of Economics and Management, University of Aarhus.
  4. Adam McCloskey, 2012. "Estimation of the Long-Memory Stochastic Volatility Model Parameters that is Robust to Level Shifts and Deterministic Trends," Working Papers 2012-17, Brown University, Department of Economics.
  5. Claudio Morana, 2013. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks: New Insights on the US OIS SPreads Term Structure," Working Papers 233, University of Milano-Bicocca, Department of Economics, revised Feb 2013.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bro:econwp:2012-15. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Brown Economics Webmaster).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.