IDEAS home Printed from https://ideas.repec.org/p/frz/wpaper/wp2022_26.rdf.html
   My bibliography  Save this paper

An interregional Input-Output model with spatiotemporal hydrological variability. The case of Tuscany

Author

Listed:
  • Gino Sturla
  • Benedetto Rocchi

Abstract

The work of Rocchi and Sturla (2021) presents an analysis of the pressure of the economic system on water resources in Tuscany at the regional level; in a following development Sturla and Rocchi (2022) incorporate temporal the hydrological variability to the regional model, with endogenous effects on agricultural and water for dilution demand. In this study, spatiotemporal variability is incorporated through i) a spatial disaggregation of the economic system based on an interregional input-output model (IRIO model) of Tuscan economy, ii) a spatial disaggregation of the hydrological components based on subregional data, and iii) a spatiotemporal model for the hydrological components based on a spatial stochastic model of precipitation. The spatial analysis scale corresponds to the Local Labor System (LLS), groups of contiguous municipalities classified based on economic criteria. Using the model developed, it is estimated the extended water exploitation index (EWEI), considering the extended demand (ED) and the feasible supply (FS) of water for each LLS; 100 hydrological years are simulated using a Montecarlo procedure. A novel endogenous scarcity threshold (ST) is proposed based on the results of the model and the intra-annual economic and hydrological characteristics of each LLS. With the EWEI and the ST, the hydro-economic equilibrium (HEE) for average hydrological conditions is characterised and the opportunity cost of the HEE is estimated. The latter corresponds to the minimum reduction of regional gross output compatible with the existence HEE in all LLS. Finally, the analysis is replicated considering a hydrology scenario under climate change.

Suggested Citation

  • Gino Sturla & Benedetto Rocchi, 2022. "An interregional Input-Output model with spatiotemporal hydrological variability. The case of Tuscany," Working Papers - Economics wp2022_26.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  • Handle: RePEc:frz:wpaper:wp2022_26.rdf
    as

    Download full text from publisher

    File URL: https://www.disei.unifi.it/upload/sub/pubblicazioni/repec/pdf/wp26_2022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    2. Jorge A. Garcia-Hernandez & Roy Brouwer, 2021. "A multiregional input–output optimization model to assess impacts of water supply disruptions under climate change on the Great Lakes economy," Economic Systems Research, Taylor & Francis Journals, vol. 33(4), pages 509-535, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    2. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    3. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    6. Meghan Beck-O’Brien & Stefan Bringezu, 2021. "Biodiversity Monitoring in Long-Distance Food Supply Chains: Tools, Gaps and Needs to Meet Business Requirements and Sustainability Goals," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    7. Arbault, Damien & Rugani, Benedetto & Tiruta-Barna, Ligia & Benetto, Enrico, 2014. "A first global and spatially explicit emergy database of rivers and streams based on high-resolution GIS-maps," Ecological Modelling, Elsevier, vol. 281(C), pages 52-64.
    8. Hanfei Wu & Ruochen Jin & Ao Liu & Shiyun Jiang & Li Chai, 2022. "Savings and Losses of Scarce Virtual Water in the International Trade of Wheat, Maize, and Rice," IJERPH, MDPI, vol. 19(7), pages 1-12, March.
    9. White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.
    10. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    11. Jonas Bunsen & Matthias Finkbeiner, 2022. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    12. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    13. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    14. Guiliang Tian & Xiaosheng Han & Chen Zhang & Jiaojiao Li & Jining Liu, 2020. "Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    15. Rita Rani Chopra & Smruti Ranjan Behera, 2021. "Assessment of interstate dynamics of virtual water trade flows in primary crops production: Empirical evidence from India," Economics Bulletin, AccessEcon, vol. 41(3), pages 1860-1875.
    16. Michelle Scobie, 2020. "International aid, trade and investment and access and allocation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(2), pages 239-254, June.
    17. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    18. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    19. Weinzettel, Jan & Pfister, Stephan, 2019. "International trade of global scarce water use in agriculture: Modeling on watershed level with monthly resolution," Ecological Economics, Elsevier, vol. 159(C), pages 301-311.
    20. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.

    More about this item

    Keywords

    interregional input-output; hydrological variability; local economies; water stress; hydro-economic equilibrium; climate change.;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:frz:wpaper:wp2022_26.rdf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giorgio Ricchiuti (email available below). General contact details of provider: https://edirc.repec.org/data/defirit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.