IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1904.html
   My bibliography  Save this paper

VIPSCAL: A combined vector ideal point model for preference data

Author

Listed:
  • van Deun, K.
  • Groenen, P.J.F.
  • Delbeke, L.

Abstract

In this paper, we propose a new model that combines the vector model and the ideal point model of unfolding. An algorithm is developed, called VIPSCAL, that minimizes the combined loss both for ordinal and interval transformations. As such, mixed representations including both vectors and ideal points can be obtained but the algorithm also allows for the unmixed cases, giving either a complete ideal pointanalysis or a complete vector analysis. On the basis of previous research, the mixed representations were expected to be nondegenerate. However, degenerate solutions still occurred as the common belief that distant ideal points can be represented by vectors does not hold true. The occurrence of these distant ideal points was solved by adding certain length and orthogonality restrictions on the configuration. The restrictions can be used both for the mixed and unmixed cases in several ways such that a number of different models can be fitted by VIPSCAL.

Suggested Citation

  • van Deun, K. & Groenen, P.J.F. & Delbeke, L., 2005. "VIPSCAL: A combined vector ideal point model for preference data," Econometric Institute Research Papers EI 2005-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1904
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1904/ei200503.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clyde Coombs, 1975. "A note on the relation between the vector model and the unfolding model for preferences," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 115-116, March.
    2. Forrest Young & Yoshio Takane & Jan Leeuw, 1978. "The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 43(2), pages 279-281, June.
    3. Kiers, Henk A. L., 2002. "Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 157-170, November.
    4. Patrick Groenen & Bart-Jan Os & Jacqueline Meulman, 2000. "Optimal scaling by alternating length-constrained nonnegative least squares, with application to distance-based analysis," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 511-524, December.
    5. Wayne DeSarbo & J. Douglas Carroll, 1985. "Three-way metric unfolding via alternating weighted least squares," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 275-300, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Busing & Mark Rooij, 2009. "Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 329-360, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuroda, Masahiro & Mori, Yuichi & Iizuka, Masaya & Sakakihara, Michio, 2011. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 143-153, January.
    2. K. Van Deun & P. J. F. Groenen, 2005. "Majorization Algorithms for Inspecting Circles, Ellipses, Squares, Rectangles, and Rhombi," Operations Research, INFORMS, vol. 53(6), pages 957-967, December.
    3. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    4. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    5. Mark Davison, 1976. "Fitting and testing carroll's weighted unfolding model for preferences," Psychometrika, Springer;The Psychometric Society, vol. 41(2), pages 233-247, June.
    6. Groenen, P.J.F. & Giaquinto, P. & Kiers, H.A.L., 2003. "Weighted Majorization Algorithms for Weighted Least Squares Decomposition Models," Econometric Institute Research Papers EI 2003-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Takayuki Saito & Tatsuo Otsu, 1988. "A method of optimal scaling for multivariate ordinal data and its extensions," Psychometrika, Springer;The Psychometric Society, vol. 53(1), pages 5-25, March.
    8. Krijnen, Wim P., 2006. "Convergence of the sequence of parameters generated by alternating least squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 481-489, November.
    9. Willem Heiser, 2004. "Geometric representation of association between categories," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 513-545, December.
    10. Natale Carlo Lauro & Maria Gabriella Grassia & Rosanna Cataldo, 2018. "Model Based Composite Indicators: New Developments in Partial Least Squares-Path Modeling for the Building of Different Types of Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 421-455, January.
    11. Wayne DeSarbo & Kamel Jedidi & Joel Steckel, 1991. "A stochastic multidimensional scaling procedure for the empirical determination of convex indifference curves for preference/choice analysis," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 279-307, June.
    12. Hansohm, Jürgen, 2007. "Algorithms and error estimations for monotone regression on partially preordered sets," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1043-1050, May.
    13. S. Winsberg & J. Ramsay, 1983. "Monotone spline transformations for dimension reduction," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 575-595, December.
    14. K Hourihan, 1979. "The Evaluation of Urban Neighbourhoods 2: Preference," Environment and Planning A, , vol. 11(12), pages 1355-1366, December.
    15. Richard Sands & Forrest Young, 1980. "Component models for three-way data: An alternating least squares algorithm with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 39-67, March.
    16. Goss, Allen & Roberts, Gordon S., 2011. "The impact of corporate social responsibility on the cost of bank loans," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1794-1810, July.
    17. Maximilian Matthe & Daniel M. Ringel & Bernd Skiera, 2023. "Mapping Market Structure Evolution," Marketing Science, INFORMS, vol. 42(3), pages 589-613, May.
    18. Masahiro Kuroda & Yuichi Mori & Masaya Iizuka, 2023. "Speeding up the convergence of the alternating least squares algorithm using vector $$\varepsilon $$ ε acceleration and restarting for nonlinear principal component analysis," Computational Statistics, Springer, vol. 38(1), pages 243-262, March.
    19. Wayne DeSarbo & Donald Lehmann & Gregory Carpenter & Indrajit Sinha, 1996. "A stochastic multidimensional unfolding approach for representing phased decision outcomes," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 485-508, September.
    20. Geert Soete & J. Carroll & Anil Chaturvedi, 1993. "A modified CANDECOMP method for fitting the extended INDSCAL model," Journal of Classification, Springer;The Classification Society, vol. 10(1), pages 75-92, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.