IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v26y2009i3p329-360.html
   My bibliography  Save this article

Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings

Author

Listed:
  • Frank Busing
  • Mark Rooij

Abstract

No abstract is available for this item.

Suggested Citation

  • Frank Busing & Mark Rooij, 2009. "Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 329-360, December.
  • Handle: RePEc:spr:jclass:v:26:y:2009:i:3:p:329-360
    DOI: 10.1007/s00357-009-9039-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-009-9039-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-009-9039-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne DeSarbo & Vithala Rao, 1984. "GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 147-186, December.
    2. DeSarbo, Wayne S, et al, 2002. "A Gravity-Based Multidimensional Scaling Model for Deriving Spatial Structures Underlying Consumer Preference/Choice Judgments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 29(1), pages 91-100, June.
    3. Norman Cliff, 1966. "Orthogonal rotation to congruence," Psychometrika, Springer;The Psychometric Society, vol. 31(1), pages 33-42, March.
    4. Willem Heiser & Patrick Groenen, 1997. "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 63-83, March.
    5. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    6. van Deun, K. & Groenen, P.J.F. & Delbeke, L., 2005. "VIPSCAL: A combined vector ideal point model for preference data," Econometric Institute Research Papers EI 2005-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Rowe, Gene & Lambert, Nigel & Bowling, Ann & Ebrahim, Shah & Wakeling, Ian & Thomson, Richard, 2005. "Assessing patients' preferences for treatments for angina using a modified repertory grid method," Social Science & Medicine, Elsevier, vol. 60(11), pages 2585-2595, June.
    8. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    9. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    10. Joseph Bennett & William Hays, 1960. "Multidimensional unfolding: Determining the dimensionality of ranked preference data," Psychometrika, Springer;The Psychometric Society, vol. 25(1), pages 27-43, March.
    11. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    12. Wayne DeSarbo & J. Douglas Carroll, 1985. "Three-way metric unfolding via alternating weighted least squares," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 275-300, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    2. Wayne DeSarbo & Michael Johnson & Ajay Manrai & Lalita Manrai & Elizabeth Edwards, 1992. "Tscale: A new multidimensional scaling procedure based on tversky's contrast model," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 43-69, March.
    3. Duncan Fong & Wayne DeSarbo & Zhe Chen & Zhuying Xu, 2015. "A Bayesian Vector Multidimensional Scaling Procedure Incorporating Dimension Reparameterization with Variable Selection," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 1043-1065, December.
    4. Joonwook Park & Priyali Rajagopal & Wayne DeSarbo, 2012. "A New Heterogeneous Multidimensional Unfolding Procedure," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 263-287, April.
    5. Patrick Groenen & Willem Heiser, 1996. "The tunneling method for global optimization in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 529-550, September.
    6. Jacqueline Meulman, 1992. "The integration of multidimensional scaling and multivariate analysis with optimal transformations," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 539-565, December.
    7. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    8. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    9. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    10. J. Ramsay, 1969. "Some statistical considerations in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 167-182, June.
    11. Massimiliano Agovino & Maria Ferrara & Antonio Garofalo, 2017. "The driving factors of separate waste collection in Italy: a multidimensional analysis at provincial level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2297-2316, December.
    12. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    13. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
    14. Pepermans, Roland & Verleye, Gino, 1998. "A unified Europe? How euro-attitudes relate to psychological differences between countries," Journal of Economic Psychology, Elsevier, vol. 19(6), pages 681-699, December.
    15. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    16. Verniest, Fabien & Greulich, Sabine, 2019. "Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review," Ecological Modelling, Elsevier, vol. 414(C).
    17. Charles Sherman, 1972. "Nonmetric multidimensional scaling: A monte carlo study of the basic parameters," Psychometrika, Springer;The Psychometric Society, vol. 37(3), pages 323-355, September.
    18. Bert Green, 1966. "The computer revolution in psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 437-445, December.
    19. H. Micko, 1970. "A “halo”-model for multidimensional ratio scaling," Psychometrika, Springer;The Psychometric Society, vol. 35(2), pages 199-227, June.
    20. J. Carroll, 1985. "Review," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 133-140, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:26:y:2009:i:3:p:329-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.