Advanced Search
MyIDEAS: Login to save this article or follow this journal

Algorithms and error estimations for monotone regression on partially preordered sets


Author Info

  • Hansohm, Jürgen
Registered author(s):


    Monotone (or isotonic) regression plays an important role in data analysis and in other fields. In many cases the monotonicity is only defined for a partial instead of a total preorder. No efficient algorithm is known which solves the general problem in a finite number of steps. For an approximate solution of the optimum some error estimations are given. Moreover, some new results concerning monotone regression and the treatment of missing values are presented in this paper.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 5 (May)
    Pages: 1043-1050

    as in new window
    Handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1043-1050

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Monotone regression Isotone regression Projection Partial order Least squares solution;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Wojciech Gamrot, 2013. "Maximum likelihood estimation for ordered expectations of correlated binary variables," Statistical Papers, Springer, vol. 54(3), pages 727-739, August.
    2. Jürgen Hansohm & Xiaomi Hu, 2012. "A convergent algorithm for a generalized multivariate isotonic regression problem," Statistical Papers, Springer, vol. 53(1), pages 107-115, February.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1043-1050. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.