Advanced Search
MyIDEAS: Login

Optimal Estimation under Nonstandard Conditions

Contents:

Author Info

Abstract

We analyze optimality properties of maximum likelihood (ML) and other estimators when the problem does not necessarily fall within the locally asymptotically normal (LAN) class, therefore covering cases that are excluded from conventional LAN theory such as unit root nonstationary time series. The classical Hájek-Le Cam optimality theory is adapted to cover this situation. We show that the expectation of certain monotone "bowl-shaped" functions of the squared estimation error are minimized by the ML estimator in locally asymptotically quadratic situations, which often occur in nonstationary time series analysis when the LAN property fails. Moreover, we demonstrate a direct connection between the (Bayesian property of) asymptotic normality of the posterior and the classical optimality properties of ML estimators.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d17a/d1748.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1748.

as in new window
Length: 19 pages
Date of creation: Jan 2010
Date of revision:
Publication status: Published in Journal of Econometrics (August 2012), 169(2): 258-265
Handle: RePEc:cwl:cwldpp:1748

Note: CFP 1364
Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Bayesian asymptotics; Asymptotic normality; Local asymptotic normality; Locally asymptotic quadratic; Optimality property of MLE; Weak convergence;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
  2. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
  3. Phillips, Peter C B, 1996. "Econometric Model Determination," Econometrica, Econometric Society, vol. 64(4), pages 763-812, July.
  4. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," CIRJE F-Series CIRJE-F-207, CIRJE, Faculty of Economics, University of Tokyo.
  5. Jae-Young Kim, 1998. "Large Sample Properties of Posterior Densities, Bayesian Information Criterion and the Likelihood Principle in Nonstationary Time Series Models," Econometrica, Econometric Society, vol. 66(2), pages 359-380, March.
  6. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
  7. Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
  8. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
  9. Keisuke Hirano & Jack R. Porter, 2002. "Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support," Harvard Institute of Economic Research Working Papers 1988, Harvard - Institute of Economic Research.
  10. Jeganathan, P., 1991. "On the Asymptotic Behavior of Least-Squares Estimators in AR Time Series with Roots Near the Unit Circle," Econometric Theory, Cambridge University Press, vol. 7(03), pages 269-306, September.
  11. Peter C.B. Phillips & Tassos Magdalinos, 2004. "Limit Theory for Moderate Deviations from a Unit Root," Cowles Foundation Discussion Papers 1471, Cowles Foundation for Research in Economics, Yale University.
  12. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, November.
  13. Kleibergen, F.R. & Paap, R., 1998. "Priors, posteriors and Bayes factors for a Bayesian analysis of cointegration," Econometric Institute Research Papers EI 9821, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Elena Andreou & Bas J.M. Werker, 2014. "Residual-based Rank Specification Tests for AR-GARCH type models," University of Cyprus Working Papers in Economics 02-2014, University of Cyprus Department of Economics.
  2. Hallin, M. & Akker, R. van den & Werker, B.J.M., 2012. "Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Discussion Paper 2012-089, Tilburg University, Center for Economic Research.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1748. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.