Advanced Search
MyIDEAS: Login

On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors

Contents:

Author Info

  • Shiqing Ling
  • Michael McAleer

Abstract

This paper considers adaptive estimation in nonstationary autoregressive moving average models with the noise sequence satisfying a generalised autoregressive conditional heteroscedastic process. The locally asymptotic quadratic form of the log-likelihood ratio for the model is obtained. It is shown that the limit experiment is neither LAN nor LAMN, but is instead LABF. Adaptivity is discussed and it is found that the parameters in the model are generally not adaptively estimable if the density of the rescaled error is asymmetric. For the model with symmetric density of the rescaled error, a new efficiency criterion is established for a class of defined MƒË-estimators. It is shown that such efficient estimators can be constructed when the density is known. Using the kernel estimator for the score function, adaptive estimators are constructed when the density of the rescaled error is symmetric, and it is shown that the adaptive procedure for the parameters in the conditional mean part uses the full sample without splitting. These estimators are demonstrated to be asymptotically efficient in the class of MƒË-estimators. The paper includes the results that the stationary ARMA-GARCH model is LAN, and that the parameters in the model with symmetric density of the rescaled error are adaptively estimable after a reparameterisation of the GARCH process.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.iser.osaka-u.ac.jp/library/dp/2001/dp0548.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Institute of Social and Economic Research, Osaka University in its series ISER Discussion Paper with number 0548.

as in new window
Length:
Date of creation: Jul 2001
Date of revision:
Handle: RePEc:dpr:wpaper:0548

Contact details of provider:
Postal: 6-1 Mihogaoka, Ibaraki, Osaka 567-0047
Fax: 81-6-6879-8583
Email:
Web page: http://www.iser.osaka-u.ac.jp/index-e.html
More information through EDIRC

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Graham Elliott & Thomas J. Rothenberg & James H. Stock, 1992. "Efficient Tests for an Autoregressive Unit Root," NBER Technical Working Papers 0130, National Bureau of Economic Research, Inc.
  2. Drost, F.C. & Klaasens, C.A.J. & Werker, B.J.M., 1994. "Adaptive Estimation in Time Series Models," Papers 9488, Tilburg - Center for Economic Research.
  3. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
  4. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  5. Peter C.B. Phillips, 1987. "Partially Identified Econometric Models," Cowles Foundation Discussion Papers 845R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1988.
  6. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
  7. Shin, Dong Wan & So, Beong Soo, 1999. "Unit Root Tests Based On Adaptive Maximum Likelihood Estimation," Econometric Theory, Cambridge University Press, vol. 15(01), pages 1-23, February.
  8. Shiqing Ling & Michael McAleer, 2001. "Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models," ISER Discussion Paper 0534, Institute of Social and Economic Research, Osaka University.
  9. Kreiss Jens-Peter, 1987. "On Adaptive Estimation In Autoregressive Models When There Are Nuisance Functions," Statistics & Risk Modeling, De Gruyter, vol. 5(1-2), pages 59-76, February.
  10. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
  11. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  12. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  13. Hansen, Bruce E., 1995. "Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1148-1171, October.
  14. Oliver Linton, 1993. "Adaptive Estimation in ARCH Models," Cowles Foundation Discussion Papers 1054, Cowles Foundation for Research in Economics, Yale University.
  15. Drost, F.C. & Klaassen, C.A.J., 1997. "Efficient estimation in semiparametric GARCH models," Open Access publications from Tilburg University urn:nbn:nl:ui:12-74146, Tilburg University.
  16. McAleer, Michael & McKenzie, Colin, 2002. " The International Congress on Modelling and Simulation: Hamilton, New Zealand, December 1999," Journal of Economic Surveys, Wiley Blackwell, vol. 16(1), pages 111-21, February.
  17. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
  18. Robinson, P M, 1988. "Semiparametric Econometrics: A Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(1), pages 35-51, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dpr:wpaper:0548. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fumiko Matsumoto).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.