Advanced Search
MyIDEAS: Login

A class of Simple Semiparametrically Efficient Rank-Based Unit Root Tests

Contents:

Author Info

  • Marc Hallin
  • Ramon van den Akker
  • Bas Werker

Abstract

We propose a class of simple rank-based tests for the null hypothesis of a unit root. This class is indexed by the choice of a reference density g, which needs not coincide with the unknown actual innovation density f. The validity of these tests, in terms of exact finite sample size, is guaranteed by distribution-freeness, irrespective of the value of the drift and the actual underlying f. When based on a Gaussian reference density g, our tests (of the van der Waerden form) perform uniformly better, in terms of asymptotic relative effciency, than the Dickey and Fuller test --except under Gaussian f, where they are doing equally well. Under Student t3 density f, the effciency gain is as high as 110%, meaning that Dickey-Fuller requires over twice as many observations as we do in order to achieve comparable performance. This gain is even larger in case the underlying f has fatter tails; under Cauchy f, where Dickey and Fuller is no longer valid, it can be considered infinite. The test associated with reference density g is semiparametrically e±cient when f happens to coincide with g, in the ubiquitous case that the model contains a non-zero drift. Finally, with an estimated density f(n) substituted for the reference density g, our tests achieve uniform (with respect to f) semiparametric efficiency.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/54112/1/RePEc_eca_wpaper_2009_001.pdf
Download Restriction: no

Bibliographic Info

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number 2009_001.

as in new window
Length: 23 p.
Date of creation: 2009
Date of revision:
Publication status: Published by:
Handle: RePEc:eca:wpaper:2009_001

Contact details of provider:
Postal: Av. F.D., Roosevelt, 39, 1050 Bruxelles
Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be
More information through EDIRC

Related research

Keywords: Dickey-Fuller test; Local Asymptotic Normality;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
  2. Michael Jansson, 2007. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," CREATES Research Papers 2007-12, School of Economics and Management, University of Aarhus.
  3. Luger, Richard, 2003. "Exact non-parametric tests for a random walk with unknown drift under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 115(2), pages 259-276, August.
  4. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
  5. Campbell, Bryan & Dufour, Jean-Marie, 1997. "Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 151-73, February.
  6. Dufour, J.M. & Campbell, B., 1993. "Exact Nonparametric Orthogonality and Random Walk Tests," Cahiers de recherche 9326, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  7. Breitung, Jorg & Gourieroux, Christian, 1997. "Rank tests for unit roots," Journal of Econometrics, Elsevier, vol. 81(1), pages 7-27, November.
  8. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
  9. Thompson, Samuel B., 2004. "Robust Tests Of The Unit Root Hypothesis Should Not Be," Econometric Theory, Cambridge University Press, vol. 20(02), pages 360-381, April.
  10. Hylleberg, Svend & Mizon, Grayham E., 1989. "A note on the distribution of the least squares estimator of a random walk with drift," Economics Letters, Elsevier, vol. 29(3), pages 225-230.
  11. Werner Ploberger, 2004. "Admissible and Nonadmissible Test in Unit-Root-like Situations," Econometric Society 2004 North American Summer Meetings 555, Econometric Society.
  12. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  13. West, Kenneth D, 1988. "Asymptotic Normality, When Regressors Have a Unit Root," Econometrica, Econometric Society, vol. 56(6), pages 1397-1417, November.
  14. Ploberger, Werner, 2004. "A complete class of tests when the likelihood is locally asymptotically quadratic," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 67-94.
  15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  16. Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Harvard Institute of Economic Research Working Papers 2047, Harvard - Institute of Economic Research.
  17. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  18. Perron, P., 1986. "Trends and Random Walks in Macroeconomic Time Series: Further Evidence From a New Approach," Cahiers de recherche 8650, Universite de Montreal, Departement de sciences economiques.
  19. Bhargava, Alok, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Wiley Blackwell, vol. 53(3), pages 369-84, July.
  20. José Angel Roldán Casas & Rafaela Dios-Palomares, 2004. "A Strategy for Testing the Unit Root in AR(1) Model with Intercept. A Monte Carlo Experiment," Economic Working Papers at Centro de Estudios Andaluces E2004/37, Centro de Estudios Andaluces.
  21. M. N. Hasan & R. W. Koenker, 1997. "Robust Rank Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 65(1), pages 133-162, January.
  22. Thompson, Samuel B., 2004. "Optimal Versus Robust Inference In Nearly Integrated Non-Gaussian Models," Econometric Theory, Cambridge University Press, vol. 20(01), pages 23-55, February.
  23. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
  24. Hasan, Mohammad N., 2001. "Rank tests of unit root hypothesis with infinite variance errors," Journal of Econometrics, Elsevier, vol. 104(1), pages 49-65, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Hallin, M. & Akker, R. van den & Werker, B.J.M., 2012. "Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Discussion Paper 2012-089, Tilburg University, Center for Economic Research.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2009_001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.