IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i545p565-581.html
   My bibliography  Save this article

Inference in Heavy-Tailed Nonstationary Multivariate Time Series

Author

Listed:
  • Matteo Barigozzi
  • Giuseppe Cavaliere
  • Lorenzo Trapani

Abstract

We study inference on the common stochastic trends in a nonstationary, N-variate time series yt, in the possible presence of heavy tails. We propose a novel methodology which does not require any knowledge or estimation of the tail index, or even knowledge as to whether certain moments (such as the variance) exist or not, and develop an estimator of the number of stochastic trends m based on the eigenvalues of the sample second moment matrix of yt. We study the rates of such eigenvalues, showing that the first m ones diverge, as the sample size T passes to infinity, at a rate faster by O(T) than the remaining N – m ones, irrespective of the tail index. We thus exploit this eigen-gap by constructing, for each eigenvalue, a test statistic which diverges to positive infinity or drifts to zero according to whether the relevant eigenvalue belongs to the set of the first m eigenvalues or not. We then construct a randomized statistic based on this, using it as part of a sequential testing procedure, ensuring consistency of the resulting estimator of m. We also discuss an estimator of the common trends based on principal components and show that, up to a an invertible linear transformation, such estimator is consistent in the sense that the estimation error is of smaller order than the trend itself. Importantly, we present the case in which we relax the standard assumption of iid innovations, by allowing for heterogeneity of a very general form in the scale of the innovations. Finally, we develop an extension to the large dimensional case. A Monte Carlo study shows that the proposed estimator for m performs particularly well, even in samples of small size. We complete the article by presenting two illustrative applications covering commodity prices and interest rates data. Supplementary materials for this article are available online.

Suggested Citation

  • Matteo Barigozzi & Giuseppe Cavaliere & Lorenzo Trapani, 2024. "Inference in Heavy-Tailed Nonstationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 565-581, January.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:565-581
    DOI: 10.1080/01621459.2022.2128807
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2022.2128807
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2022.2128807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:565-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.