Advanced Search
MyIDEAS: Login

Efficient Estimation of Copula-based Semiparametric Markov Models

Contents:

Author Info

Registered author(s):

    Abstract

    This paper considers efficient estimation of copula-based semiparametric strictly stationary Markov models. These models are characterized by nonparametric invariant (one-dimensional marginal) distributions and parametric bivariate copula functions; where the copulas capture temporal dependence and tail dependence of the processes. The Markov processes generated via tail dependent copulas may look highly persistent and are useful for financial and economic applications. We first show that Markov processes generated via Clayton, Gumbel and Student's $t$ copulas and their survival copulas are all geometrically ergodic. We then propose a sieve maximum likelihood estimation (MLE) for the copula parameter, the invariant distribution and the conditional quantiles. We show that the sieve MLEs of any smooth functionals are root-$n$ consistent, asymptotically normal and efficient; and that their sieve likelihood ratio statistics are asymptotically chi-square distributed. We present Monte Carlo studies to compare the finite sample performance of the sieve MLE, the two-step estimator of Chen and Fan (2006), the correctly specified parametric MLE and the incorrectly specified parametric MLE. The simulation results indicate that our sieve MLEs perform very well; having much smaller biases and smaller variances than the two-step estimator for Markov models generated via Clayton, Gumbel and other tail dependent copulas.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://cowles.econ.yale.edu/P/cd/d16b/d1691.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1691.

    as in new window
    Length: 55 pages
    Date of creation: Feb 2009
    Date of revision: Mar 2009
    Publication status: Published in Annals of Statistics (2009), 37(6B): 4214-4253
    Handle: RePEc:cwl:cwldpp:1691

    Contact details of provider:
    Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
    Phone: (203) 432-3702
    Fax: (203) 432-6167
    Web page: http://cowles.econ.yale.edu/
    More information through EDIRC

    Order Information:
    Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

    Related research

    Keywords: Copula; Tail dependence; Nonlinear Markov models; Geometric ergodicity; Sieve MLE; Semiparametric efficiency; Sieve likelihood ratio statistics; Value-at-Risk;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    2. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    3. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2008. "Copula-Based Nonlinear Quantile Autoregression," Cowles Foundation Discussion Papers 1679, Cowles Foundation for Research in Economics, Yale University.
    4. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(06), pages 995-1045, December.
    5. Jianqing Fan & Jiancheng Jiang, 2007. "Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 16(3), pages 409-444, December.
    6. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    7. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    8. Xiaotong Shen & Hsin-Cheng Huang & Jimmy Ye, 2004. "Inference After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 751-762, January.
    9. Andrew Patton, 2004. "Modelling Asymmetric Exchange Rate Dependence," Working Papers wp04-04, Warwick Business School, Finance Group.
    10. Genest, C. & Werker, B.J.M., 2001. "Conditions for the asymptotic semiparametric efficiency of an omnibus estimator of dependence parameters in copula models," Open Access publications from Tilburg University urn:nbn:nl:ui:12-86725, Tilburg University.
    11. Chen, Jian & Peng, Liang & Zhao, Yichuan, 2009. "Empirical likelihood based confidence intervals for copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 137-151, January.
    12. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    13. Beare, Brendan, 2008. "Copulas and Temporal Dependence," University of California at San Diego, Economics Working Paper Series qt2880q2jq, Department of Economics, UC San Diego.
    14. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    2. Beare, Brendan K., 2010. "Archimedean Copulas and Temporal Dependence," University of California at San Diego, Economics Working Paper Series qt0xh8q1g3, Department of Economics, UC San Diego.
    3. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    4. Beatriz Vaz de Melo Mendes & Cecília Aíube, 2011. "Copula based models for serial dependence," International Journal of Managerial Finance, Emerald Group Publishing, vol. 7(1), pages 68-82, February.
    5. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, School of Economics and Management, University of Aarhus.
    6. Beare, Brendan K. & Seo, Juwon, 2012. "Time irreversible copula-based Markov Models," University of California at San Diego, Economics Working Paper Series qt31f8500p, Department of Economics, UC San Diego.
    7. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    8. Beare, Brendan K., 2009. "Copulas and Temporal Dependence," University of California at San Diego, Economics Working Paper Series qt87p829d4, Department of Economics, UC San Diego.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1691. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.