Advanced Search
MyIDEAS: Login

Weak Dependence: Models And Applications To Econometrics

Contents:

Author Info

  • Nze, Patrick Ango
  • Doukhan, Paul
Registered author(s):

    Abstract

    In this paper we discuss weak dependence and mixing properties of some popular models. We also develop some of their econometric applications. Autoregressive models, autoregressive conditional heteroskedasticity (ARCH) models, and bilinear models are widely used in econometrics. More generally, stationary Markov modeling is often used. Bernoulli shifts also generate many useful stationary sequences, such as autoregressive moving average (ARMA) or ARCH( ) processes. For Volterra processes, mixing properties obtain given additional regularity assumptions on the distribution of the innovations.We recall associated probability limit theorems and investigate the nonparametric estimation of those sequences.We first thank the editor for the huge amount of additional editorial work provided for this review paper. The efficiency of the numerous referees was especially useful. The error pointed out in Hall and Horowitz (1996) was the origin of the present paper, and we thank the referees for asking for a more detailed treatment of a correct proof for this paper in Section 2.3. Also we thank Marc Henry and Rafal Wojakowski for a very careful rereading of the paper. An anonymous referee has been particularly helpful in the process of revision of the paper. The authors thank him for his numerous suggestions of improvement, including important results on negatively associated sequences and a thorough update in standard English.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://journals.cambridge.org/abstract_S0266466604206016
    File Function: link to article abstract page
    Download Restriction: no

    Bibliographic Info

    Article provided by Cambridge University Press in its journal Econometric Theory.

    Volume (Year): 20 (2004)
    Issue (Month): 06 (December)
    Pages: 995-1045

    as in new window
    Handle: RePEc:cup:etheor:v:20:y:2004:i:06:p:995-1045_20

    Contact details of provider:
    Postal: The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU UK
    Fax: +44 (0)1223 325150
    Web page: http://journals.cambridge.org/jid_ECTProvider-Email:journals@cambridge.org

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    2. Dennis Kristensen & Yongseok Shin, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-58, School of Economics and Management, University of Aarhus.
    3. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(01), pages 37-70, February.
    4. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(05), pages 935-958, October.
    5. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
    6. Dennis Kristensen & Bernard Salanie, 2013. "Higher-order properties of approximate estimators," CeMMAP working papers CWP45/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Sancetta, Alessio, 2009. "Nearest neighbor conditional estimation for Harris recurrent Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2224-2236, November.
    8. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression asymptotics using martingale convergence methods," Scholarly Articles 2624459, Harvard University Department of Economics.
    9. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    10. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    11. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    12. Berkes, István & Hörmann, Siegfried & Horváth, Lajos, 2008. "The functional central limit theorem for a family of GARCH observations with applications," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2725-2730, November.
    13. Oberhofer, Walter & Haupt, Harry, 2003. "Nonlinear quantile regression under dependence and heterogeneity," University of Regensburg Working Papers in Business, Economics and Management Information Systems 388, University of Regensburg, Department of Economics.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:20:y:2004:i:06:p:995-1045_20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.