Advanced Search
MyIDEAS: Login to save this paper or follow this series

Locally stationary volatility modelling

Contents:

Author Info

  • VAN BELLEGEM, Sébastien

    ()
    (Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium and ECORE)

Abstract

The increasing works on parameter instability, structural changes and regime switches lead to the natural research question whether the assumption of stationarity is appropriate to model volatility processes. Early econometric studies have provided testing procedures of covariance stationarity and have shown empirical evidence for the unconditional time-variation of the dependence structure of many financial time series.After a review of several econometric tests of covariance stationarity, this survey paper focuses on several attempts in the literature to model the time-varying second- order dependence of volatility time series. The approaches that are summarized in this discussion paper propose various specification for this time-varying dynamics. In some of them an explicit variation over time is suggested, such as in the spline GARCH model. Larger classes of nonstationary models have also been proposed, in which the variation of the parameters may be more general such as in the so-called locally stationary models. In another approach that is called “adaptive”, no explicit global model is assumed and local parametric model are adaptively fitted at each point over time. Multivariate extensions are also visited. A comparison of these approaches is proposed in this paper and some illustrations are provided on the two last decades of data of the Dow Jones Industrial Average index.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://uclouvain.be/cps/ucl/doc/core/documents/coredp2011_41web.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2011041.

as in new window
Length:
Date of creation: 01 Oct 2011
Date of revision:
Handle: RePEc:cor:louvco:2011041

Contact details of provider:
Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Email:
Web page: http://www.uclouvain.be/core
More information through EDIRC

Related research

Keywords: volatility; locally stationary time series; multiplicative model; adaptive estimation;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  2. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
  3. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
  4. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
  5. P. Č�žek & W. H�rdle & V. Spokoiny, 2009. "Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 248-271, 07.
  6. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-313, September.
  7. Van Bellegem, Sebastien & von Sachs, Rainer, 2004. "Forecasting economic time series with unconditional time-varying variance," International Journal of Forecasting, Elsevier, vol. 20(4), pages 611-627.
  8. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
  9. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
  10. Rappoport, Peter & Reichlin, Lucrezia, 1989. "Segmented Trends and Non-stationary Time Series," Economic Journal, Royal Economic Society, vol. 99(395), pages 168-77, Supplemen.
  11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  12. Richard Paap & Philip Hans Franses & Marco Van Der Leij, 2002. "Modelling and forecasting level shifts in absolute returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 601-616.
  13. Sébastien Van Bellegem & Rainer Dahlhaus, 2006. "Semiparametric estimation by model selection for locally stationary processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 721-746.
  14. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
  15. Perron, P, 1988. "The Great Crash, The Oil Price Shock And The Unit Root Hypothesis," Papers 338, Princeton, Department of Economics - Econometric Research Program.
  16. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  17. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-61, January.
  18. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670.
  19. Cristina Amado & Timo Teräsvirta, 2011. "Modelling Volatility by Variance Decomposition," CREATES Research Papers 2011-01, School of Economics and Management, University of Aarhus.
  20. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  21. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Cristina Amado & Timo Teräsvirta, 2011. "Modelling Volatility by Variance Decomposition," NIPE Working Papers 01/2011, NIPE - Universidade do Minho.
  2. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Bonsoo Koo & Oliver Linton, 2013. "Let's get LADE: robust estimation of semiparametric multiplicative volatility models," CeMMAP working papers CWP11/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2011041. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.