Advanced Search
MyIDEAS: Login to save this article or follow this journal

Splines for financial volatility

Contents:

Author Info

  • Francesco Audrino
  • Peter Bühlmann

Abstract

We propose a flexible generalized auto-regressive conditional heteroscedasticity type of model for the prediction of volatility in financial time series. The approach relies on the idea of using multivariate "B"-splines of lagged observations and volatilities. Estimation of such a "B"-spline basis expansion is constructed within the likelihood framework for non-Gaussian observations. As the dimension of the "B"-spline basis is large, i.e. many parameters, we use regularized and sparse model fitting with a boosting algorithm. Our method is computationally attractive and feasible for large dimensions. We demonstrate its strong predictive potential for financial volatility on simulated and real data, and also in comparison with other approaches, and we present some supporting asymptotic arguments. Copyright (c) 2009 Royal Statistical Society.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2009.00696.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series B (Statistical Methodology).

Volume (Year): 71 (2009)
Issue (Month): 3 ()
Pages: 655-670

as in new window
Handle: RePEc:bla:jorssb:v:71:y:2009:i:3:p:655-670

Contact details of provider:
Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
Phone: -44-171-638-8998
Fax: -44-171-256-7598
Email:
Web page: http://wileyonlinelibrary.com/journal/rssb
More information through EDIRC

Order Information:
Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9868&doi=10.1111/(ISSN)1467-9868

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  2. Yang, Lijian & Härdle, Wolfgang & Nielsen, Jens P., 1998. "Nonparametric autoregression with multiplicative volatility and additive mean," SFB 373 Discussion Papers 1998,107, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  4. Gourieroux Christian & Monfort Alain, 1991. "Qualitative threshold arch models," CEPREMAP Working Papers (Couverture Orange) 9109, CEPREMAP.
  5. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  6. Francesco Audrino, 2005. "Local Likelihood for non-parametric ARCH(1) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 251-278, 03.
  7. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
  8. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
  9. Robert F. Engle & Jose Gonzalo Rangel, 2005. "The Spline GARCH Model for Unconditional Volatility and its Global Macroeconomic Causes," Working Papers 2005/13, Czech National Bank, Research Department.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, 03.
  2. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," CORE Discussion Papers 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer, vol. 96(1), pages 99-122, January.
  4. Ozer Ozdemir & Memmedaga Memmedli & Akhlitdin Nizamitdinov, 2013. "ANN Models and Bayesian Spline Models for Analysis of Exchange Rates and Gold Price," International Econometric Review (IER), Econometric Research Association, vol. 5(2), pages 53-69, September.
  5. Audrino, Francesco & Meier, Pirmin, 2012. "Empirical pricing kernel estimation using a functional gradient descent algorithm based on splines," Economics Working Paper Series 1210, University of St. Gallen, School of Economics and Political Science.
  6. Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:3:p:655-670. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.