Advanced Search
MyIDEAS: Login to save this article or follow this journal

ANN Models and Bayesian Spline Models for Analysis of Exchange Rates and Gold Price

Contents:

Author Info

  • Ozer Ozdemir

    ()
    (Anadolu University, Faculty of Science, Department of Statistics.)

  • Memmedaga Memmedli

    ()
    (Anadolu University, Faculty of Science, Department of Statistics.)

  • Akhlitdin Nizamitdinov

    ()
    (Anadolu University, Faculty of Science, Department of Statistics)

Registered author(s):

    Abstract

    ANN (Artificial Neural Network) models and Spline techniques have been applied to economic analysis, to handle economic problems, evaluate portfolio risk and stock performance, and to forecast stock exchange rates and gold prices. These techniques are improving nowadays and continue to serve as powerful predictive tools. In this study, we compare the performance of ANN models and Bayesian Spline models in forecasting economic datasets. We consider the most commonly used ANN models, which are Generalized Regression Neural Networks (GRNN), Multilayer Perceptron (MLP), and Radial Basis Function Neural Networks (RBFNN). We compare these models using BayesX and Statistica software with three important economic datasets: on the exchange rate of Turkish Liras (TL) to Euro, exchange rate of Turkish Liras (TL) to United States Dollars (USD), and Gold Price for Turkey. With these three economic datasets, we made a comparative study of these models, using the criterions MSE and MAPE to evaluate their forecasting performance. The results demonstrate that the penalized spline model performed best amongst the spline techniques and their Bayesian versions. Amongst the ANN models, the MLP model obtained the best performance criterion results.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.era.org.tr/makaleler/11130001.pdf
    Download Restriction: no

    Bibliographic Info

    Article provided by Econometric Research Association in its journal International Econometric Review.

    Volume (Year): 5 (2013)
    Issue (Month): 2 (September)
    Pages: 53-69

    as in new window
    Handle: RePEc:erh:journl:v:5:y:2013:i:2:p:53-69

    Contact details of provider:
    Postal: Sairler Sokak, No:32/C, Gaziosmanpasa, Ankara, Turkey
    Phone: + 90 312 447 51 95
    Fax: + 90 312 447 51 95
    Email:
    Web page: http://www.era.org.tr/
    More information through EDIRC

    Related research

    Keywords: Artificial Neural Networks; Bayesian Spline Models; Exchange Rates;

    Find related papers by JEL classification:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Sýdýka Baþçý & Asad Zaman, 1998. "Variance Estimates and Model Selection," Departmental Working Papers 9814, Bilkent University, Department of Economics.
    2. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670.
    3. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    4. Ord, Keith & Hibon, Michele & Makridakis, Spyros, 2000. "The M3-Competition1," International Journal of Forecasting, Elsevier, vol. 16(4), pages 433-436.
    5. Alfred Greiner, 2009. "Estimating penalized spline regressions: theory and application to economics," Applied Economics Letters, Taylor & Francis Journals, vol. 16(18), pages 1831-1835.
    6. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    7. Makridakis, Spyros & Chatfield, Chris & Hibon, Michele & Lawrence, Michael & Mills, Terence & Ord, Keith & Simmons, LeRoy F., 1993. "The M2-competition: A real-time judgmentally based forecasting study," International Journal of Forecasting, Elsevier, vol. 9(1), pages 5-22, April.
    8. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114.
    9. Greiner, Alfred & Kauermann, Goran, 2007. "Sustainability of US public debt: Estimating smoothing spline regressions," Economic Modelling, Elsevier, vol. 24(2), pages 350-364, March.
    10. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:erh:journl:v:5:y:2013:i:2:p:53-69. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (M. F. Cosar).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.