IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt20c342sp.html
   My bibliography  Save this paper

Behavioral response to hydrogen fuel cell vehicles and refueling: Results of California drive clinics

Author

Listed:
  • Martin, Elliot
  • Shaheen, Susan A
  • Lipman, Timothy E
  • Lidicker, Jeffrey R

Abstract

Over the last several decades, hydrogen fuel cell vehicles (FCVs) have emerged as a zero tailpipe-emission alternative to the battery electric vehicle (EV). To address questions about consumer reaction to FCVs, this report presents the results of a “ride-and-drive” clinic series (n=182) held in 2007 with a Mercedes-Benz A-Class “F-Cell” hydrogen FCV. The clinic evaluated participant reactions to driving and riding in an FCV, as well as vehicle refueling. Pre-and post clinic surveys assessed consumer response. More than 80% left with a positive overall impression of hydrogen. The majority expressed a willingness to travel five to ten minutes to find a hydrogen station. More than 90% of participants would consider an FCV driving range of 300 miles (480 kilometers) to be acceptable. Stated willingness-to-pay preferences were explored. The results show that short-term exposure can improve consumer perceptions of hydrogen performance and safety among people who are the more likely early adopters.

Suggested Citation

  • Martin, Elliot & Shaheen, Susan A & Lipman, Timothy E & Lidicker, Jeffrey R, 2009. "Behavioral response to hydrogen fuel cell vehicles and refueling: Results of California drive clinics," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt20c342sp, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt20c342sp
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/20c342sp.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurani, Kenneth S & Turrentine, Tom & Sperling, Daniel, 1994. "Demand for electric vehicles in hybrid households: an exploratory analysis," Transport Policy, Elsevier, vol. 1(4), pages 244-256, October.
    2. Kurani, Kenneth S. & Turrentine, Tom & Sperling, Daniel, 1994. "Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis," University of California Transportation Center, Working Papers qt1c29r4hr, University of California Transportation Center.
    3. Kurani, Kenneth & Turrentine, Thomas & Sperling, Daniel, 1996. "Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey," Institute of Transportation Studies, Working Paper Series qt0sb956wq, Institute of Transportation Studies, UC Davis.
    4. O'Garra, Tanya & Mourato, Susana & Garrity, Lisa & Schmidt, Patrick & Beerenwinkel, Anne & Altmann, Matthias & Hart, David & Graesel, Cornelia & Whitehouse, Simon, 2007. "Is the public willing to pay for hydrogen buses? A comparative study of preferences in four cities," Energy Policy, Elsevier, vol. 35(7), pages 3630-3642, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosales-Tristancho, Abel & Brey, Raúl & Carazo, Ana F. & Brey, J. Javier, 2022. "Analysis of the barriers to the adoption of zero-emission vehicles in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 19-43.
    2. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Wu, Libo & Li, Changhe & Qian, Haoqi & Zhang, ZhongXiang, 2013. "Understanding the Consumption Behaviors on Electric Vehicles in China - A Stated Preference Analysis," Climate Change and Sustainable Development 158729, Fondazione Eni Enrico Mattei (FEEM).
    5. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    6. Poder, Thomas G. & He, Jie, 2017. "Willingness to pay for a cleaner car: The case of car pollution in Quebec and France," Energy, Elsevier, vol. 130(C), pages 48-54.
    7. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    8. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    9. Tarigan, Ari K.M. & Bayer, Stian B., 2012. "Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5535-5544.
    10. Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
    11. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    12. Shunichi Hienuki & Yoshie Hirayama & Tadahiro Shibutani & Junji Sakamoto & Jo Nakayama & Atsumi Miyake, 2019. "How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    13. Hardman, Scott PhD & Davis, Adam PhD & Tal, Gil PhD, 2022. "Investigating Hydrogen Station Use and Station Access in California Using a Survey of Fuel Cell Vehicle Drivers," Institute of Transportation Studies, Working Paper Series qt4qp5m2kr, Institute of Transportation Studies, UC Davis.
    14. Kim, Ju-Hee & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2019. "Willingness to pay for fuel-cell electric vehicles in South Korea," Energy, Elsevier, vol. 174(C), pages 497-502.
    15. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Rosales-Tristancho, Abel & Carazo, Ana F. & Brey, Raúl, 2021. "A study of the willingness of Spanish drivers to pay a premium for ZEVs," Energy Policy, Elsevier, vol. 149(C).
    17. Kim, Ga-Eun & Kim, Ju-Hee & Yoo, Seung-Hoon, 2019. "South Korean consumers’ preferences for eco-friendly gasoline sedans: Results from a choice experiment survey," Transport Policy, Elsevier, vol. 77(C), pages 1-7.
    18. Brey, J.J. & Carazo, A.F. & Brey, R., 2018. "Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2893-2899.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Elliot & Shaheen, Susan & Lipman, Timothy & Lidicker, Jeffery, 2008. "Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure," Institute of Transportation Studies, Working Paper Series qt8nv3g1k3, Institute of Transportation Studies, UC Davis.
    2. Yetano Roche, María & Mourato, Susana & Fischedick, Manfred & Pietzner, Katja & Viebahn, Peter, 2010. "Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications," Energy Policy, Elsevier, vol. 38(10), pages 5301-5310, October.
    3. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    4. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    5. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert, 2016. "Comparing high-end and low-end early adopters of battery electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 40-57.
    6. Axsen, Jonn, 2010. "Interpersonal Influence within Car Buyers’ Social Networks: Observing Consumer Assessment of Plug-in Hybrid Electric Vehicles (PHEVs) and the Spread of Pro-Societal Values," Institute of Transportation Studies, Working Paper Series qt8p32d18k, Institute of Transportation Studies, UC Davis.
    7. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    8. Bruno Faivre d'Arcier & Odile Andan & Charles Raux, 1998. "Stated adaptation surveys and choice process: Some methodological issues," Post-Print halshs-00139993, HAL.
    9. Turrentine, Tom & Garas, Dahlia & Lentz, Andy & Woodjack, Justin, 2011. "The UC Davis MINI E Consumer Study," Institute of Transportation Studies, Working Paper Series qt15g9v24c, Institute of Transportation Studies, UC Davis.
    10. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    11. Golob, Thomas F. & Gould, Jane, 1998. "Projecting use of electric vehicles from household vehicle trials," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 441-454, September.
    12. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
    13. Williams, Brett D, 2010. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management," University of California Transportation Center, Working Papers qt15f9495j, University of California Transportation Center.
    14. Chéron, Emmanuel & Zins, Michel, 1997. "Electric vehicle purchasing intentions: The concern over battery charge duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 235-243, May.
    15. Heffner, Reid R., 2007. "Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers," Institute of Transportation Studies, Working Paper Series qt9mw1t4w3, Institute of Transportation Studies, UC Davis.
    16. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt4kv151dp, Institute of Transportation Studies, UC Davis.
    17. Wesche, Julius P. & Plötz, Patrick & Dütschke, Elisabeth, 2016. "How to trigger mass market adoption of electric vehicles? Factors predicting interest in electric vehicles in Germany," Working Papers "Sustainability and Innovation" S07/2016, Fraunhofer Institute for Systems and Innovation Research (ISI).
    18. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt16k010cq, Institute of Transportation Studies, UC Davis.
    19. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    20. Abbanat, Brian A., 2001. "Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households," Institute of Transportation Studies, Working Paper Series qt13q9r34w, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt20c342sp. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.