Advanced Search
MyIDEAS: Login to save this paper or follow this series

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity†technologies and opportunities

Contents:

Author Info

  • Williams, Brett D
  • Kurani, Kenneth S
Registered author(s):

    Abstract

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called “Mobile Electricity†is characterized. Mobile Electricity (Me-) redefines H2FCVs as innovative products able to import and export electricity across the traditional vehicle boundary. Such vehicles could provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. To characterize such opportunities, this study first integrates and extends previous analyses of H2FCVs, plugin hybrids, and vehicle-to-grid (V2G) power. It uses a new electric-drive-vehicle and vehicular-distributed-generation model to estimate zero-emission-power vs. zeroemission- driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. Next, the initial market potential for Me-enabled vehicles, such as H2FCVs and plug-in hybrids, is estimated by eliminating unlikely households from consideration for early adoption. 5.2 million of 33.9 million Californians in the 2000 Census live in households pre-adapted to Me-enabled vehicles, 3.9 million if natural gas is required for home refueling. The possible sales base represented by this population is discussed. Several differences in demographic and other characteristics between the target market and the driving-age population are highlighted, and two issues related to the design of H2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments—which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing Me- innovations. Next, Me-H2FCV commercialization issues are raised from the perspectives of innovation, product development, and strategic marketing. Starting with today’s internalcombustion hybrids, this discussion suggests a way to move beyond the battery vs. fuelcell zero-sum game and towards the development of integrated plug-in/plug-out hybrid platforms. H2FCVs are described as one possible extension of this Me- product platform for the supply of clean, high-power, and profitable Me- services as the technologies and markets mature. Finally, the major findings of this study are summarized and directions for future work discussed. Together, the parts of this Mobile Electricity innovation assessment reveal an initially expensive and limited but compelling (and possibly necessary) set of opportunities to help drive H2FCV and other electric-drive-vehicle commercialization. Keywords: Hydrogen-fuel-cell vehicle, Mobile Electricity innovation, Plug-in hybrid, Plug-out hybrid, Vehicle-to-grid power, Vehicular distributed generation, Household market potential, product development, market development.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.escholarship.org/uc/item/34x5p0kn.pdf;origin=repeccitec
    Download Restriction: no

    Bibliographic Info

    Paper provided by Institute of Transportation Studies, UC Davis in its series Institute of Transportation Studies, Working Paper Series with number qt34x5p0kn.

    as in new window
    Length:
    Date of creation: 01 Jan 2007
    Date of revision:
    Handle: RePEc:cdl:itsdav:qt34x5p0kn

    Contact details of provider:
    Postal: 2028 Academic Surge, One Shields Avenue, Davis, CA 95616
    Phone: (530) 752-6548
    Email:
    Web page: http://www.escholarship.org/repec/itsdavis/
    More information through EDIRC

    Related research

    Keywords: UCD-ITS-RR-07-14; Engineering;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    2. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt5cc9g0jp, Institute of Transportation Studies, UC Davis.
    3. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt0qp6s4mb, Institute of Transportation Studies, UC Davis.
    4. Nesbitt, Kevin & Sperling, Daniel, 1998. "Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets," University of California Transportation Center, Working Papers qt0q6053j9, University of California Transportation Center.
    5. Kurani, Kenneth S & Turrentine, Tom & Sperling, Daniel, 1994. "Demand for electric vehicles in hybrid households: an exploratory analysis," Transport Policy, Elsevier, vol. 1(4), pages 244-256, October.
    6. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    7. Kurani, Kenneth S & Sperling, Daniel & Lipman, Timothy & Stanger, Deborah & Turrentine, Thomas & Stein, Aram, 1995. "Household Markets for Neighborhood Electric Vehicles in California," Institute of Transportation Studies, Working Paper Series qt13v2w7x0, Institute of Transportation Studies, UC Davis.
    8. DeLuchi, Mark A. & Ogden, Joan M., 1993. "Solar-hydrogen fuel-cell vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 255-275, May.
    9. Kempton, Willett & Kubo, Toru, 2000. "Electric-drive vehicles for peak power in Japan," Energy Policy, Elsevier, vol. 28(1), pages 9-18, January.
    10. Nesbitt, Kevin & Sperling, Daniel, 1998. "Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets," Institute of Transportation Studies, Working Paper Series qt07c9h9cd, Institute of Transportation Studies, UC Davis.
    11. DeLuchi, Mark A. & Ogden, Joan M., 1993. "Solar-Hydrogen Fuel-Cell Vehicles," University of California Transportation Center, Working Papers qt1m69d7sf, University of California Transportation Center.
    12. Kurani, Kenneth S. & Turrentine, Tom & Sperling, Daniel, 1994. "Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis," University of California Transportation Center, Working Papers qt1c29r4hr, University of California Transportation Center.
    13. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    14. Turrentine, Thomas & Lee-Gosselin, Martin & Kurani, Kenneth & Sperling, Daniel, 1992. "A Study of Adaptive and Optimizing Behavior for Electric Vehicles Based on Interactive Simulation Games and Revealed Behavior of Electric Vehicle Owners," University of California Transportation Center, Working Papers qt88v3x3t7, University of California Transportation Center.
    15. Flynn, Peter C., 2002. "Commercializing an alternate vehicle fuel: lessons learned from natural gas for vehicles," Energy Policy, Elsevier, vol. 30(7), pages 613-619, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
    2. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    3. Andersson, S.-L. & Elofsson, A.K. & Galus, M.D. & Göransson, L. & Karlsson, S. & Johnsson, F. & Andersson, G., 2010. "Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany," Energy Policy, Elsevier, vol. 38(6), pages 2751-2762, June.
    4. Kurani, Kenneth S & Heffner, Reid R. & Turrentine, Tom, 2008. "Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07," Institute of Transportation Studies, Working Paper Series qt35b6484z, Institute of Transportation Studies, UC Davis.
    5. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt34x5p0kn. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.