Advanced Search
MyIDEAS: Login to save this paper or follow this series

The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee

Contents:

Author Info

  • Marco Moscadelli

    ()
    (Banca d'Italia)

Registered author(s):

    Abstract

    The revised Basel Capital Accord requires banks to meet a capital requirement for operational risk as part of an overall risk-based capital framework. Three distinct options for calculating operational risk charges are proposed (Basic Approach, Standardised Approach, Advanced Measurement Approaches), reflecting increasing levels of risk sensitivity. Since 2001, the Risk Management Group of the Basel Committee has been performing specific surveys of banksÂ’ operational loss data, with the main purpose of obtaining information on the industryÂ’s operational risk experience, to be used for the refinement of the capital framework and for the calibration of the regulatory coefficients. The second loss data collection was launched in the summer of 2002: the 89 banks participating in the exercise provided the Group with more than 47,000 observations, grouped by eight standardised Business Lines and seven Event Types. A summary of the data collected, which focuses on the description of the range of individualgross loss amounts and of the distribution of the banksÂ’ losses across the business lines/event types, was returned to the industry in March 2003. The objective of this paper is to move forward with respect to that document, by illustrating the methodologies and the outcomes of the inferential analysis carried out on the data collected through 2002. To this end, after pooling the individual banksÂ’ losses according to a Business Line criterion, the operational riskiness of each Business Line data set is explored using empirical and statistical tools. The work aims, first of all, to compare the sensitivity of conventional actuarial distributions and models stemming from the Extreme Value Theory in representing the highest percentiles of the data sets: the exercise shows that the extreme value model, in its Peaks Over Threshold representation, explains the behaviour of the operational risk data in the tail area well. Then, measures of severity and frequency of the large losses are gained and, by a proper combination of these estimates, a bottom-up operational risk capital figure is computed for each Business Line. Finally, for each Business Line and in the eight Business Lines as a whole, the contributions of the expected losses to the capital figures are evaluated and the relationships between the capital charges and the corresponding average level of Gross Incomes are determined and compared with the current coefficients envisaged in the simplified approaches of the regulatory framework.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.bancaditalia.it/pubblicazioni/econo/temidi/td04/td517_04/td517/tema_517.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Bank of Italy, Economic Research and International Relations Area in its series Temi di discussione (Economic working papers) with number 517.

    as in new window
    Length:
    Date of creation: Jul 2004
    Date of revision:
    Handle: RePEc:bdi:wptemi:td_517_04

    Contact details of provider:
    Postal: Via Nazionale, 91 - 00184 Roma
    Web page: http://www.bancaditalia.it
    More information through EDIRC

    Related research

    Keywords: operational risk; heavy tails; conventional inference; Extreme Value Theory; Peaks Over Threshold; median shortfall; Point Process of exceedances; capital charge; Business Line; Gross Income; regulatory coefficients;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Center for Financial Institutions Working Papers 98-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556.
    3. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    4. Michel Dacorogna & Höskuldur Ari Hauksson & Thomas Domenig & Ulrich Müller & Gennady Samorodnitsky, 2001. "Multivariate extremes, aggregation and risk estimation," CeNDEF Workshop Papers, January 2001 P2, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    5. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    6. Gencay, Ramazan & Selcuk, Faruk, 2004. "Extreme value theory and Value-at-Risk: Relative performance in emerging markets," International Journal of Forecasting, Elsevier, vol. 20(2), pages 287-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_517_04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.