Advanced Search
MyIDEAS: Login

A Theorem on Preference Aggregation

Contents:

Author Info

Abstract

I present a general theorem on preference aggregation. This theorem implies, as corollaries, Arrow's Impossibility Theorem, Wilson's extension of Arrow's to non-Paretian aggregation rules, the Gibbard-Satterthwaite Theorem and Sen's result on the Impossibility of a Paretian Liberal. The theorem shows that these classical results are not only similar, but actually share a common root. The theorem expresses a simple but deep fact that transcends each of its particular applications: it expresses the tension between decentralizing the choice of aggregate into partial choices based on preferences over pairs of alternatives, and the need for some coordination in these decisions, so as to avoid contradictory recommendations.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://pareto.uab.es/wp/2003/60103.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC) in its series UFAE and IAE Working Papers with number 601.03.

as in new window
Length: 18
Date of creation: 01 Jul 2003
Date of revision:
Handle: RePEc:aub:autbar:601.03

Contact details of provider:
Postal: 08193, Bellaterra, Barcelona
Phone: 34 93 592 1203
Fax: +34 93 542-1223
Email:
Web page: http://pareto.uab.cat
More information through EDIRC

Related research

Keywords: NULL;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Reny, Philip J., 2001. "Arrow's theorem and the Gibbard-Satterthwaite theorem: a unified approach," Economics Letters, Elsevier, vol. 70(1), pages 99-105, January.
  2. Maurice Salles, 2000. "Amartya Sen. Droits et choix social," Revue Économique, Programme National Persée, vol. 51(3), pages 445-457.
  3. Barbera, S. & Peleg, B., 1988. "Strategy-Proof Voting Schemes With Continuous Preferences," UFAE and IAE Working Papers 91.88, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  4. Eliaz, K., 2001. "Arrow`s Theorem and the Gibbard-Satterthwaite Theorem as Special Cases of a Single Theorem," Papers 2001-11, Tel Aviv.
  5. Sen, Amartya Kumar, 1970. "The Impossibility of a Paretian Liberal," Scholarly Articles 3612779, Harvard University Department of Economics.
  6. Batteau, Pierre & Blin, Jean-Marie & Monjardet, Bernard, 1981. "Stability of Aggregation Procedures, Ultrafilters, and Simple Games," Econometrica, Econometric Society, vol. 49(2), pages 527-34, March.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aub:autbar:601.03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Xavier Vila).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.