IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.00921.html
   My bibliography  Save this paper

A Data-driven Case-based Reasoning in Bankruptcy Prediction

Author

Listed:
  • Wei Li
  • Wolfgang Karl Hardle
  • Stefan Lessmann

Abstract

There has been intensive research regarding machine learning models for predicting bankruptcy in recent years. However, the lack of interpretability limits their growth and practical implementation. This study proposes a data-driven explainable case-based reasoning (CBR) system for bankruptcy prediction. Empirical results from a comparative study show that the proposed approach performs superior to existing, alternative CBR systems and is competitive with state-of-the-art machine learning models. We also demonstrate that the asymmetrical feature similarity comparison mechanism in the proposed CBR system can effectively capture the asymmetrically distributed nature of financial attributes, such as a few companies controlling more cash than the majority, hence improving both the accuracy and explainability of predictions. In addition, we delicately examine the explainability of the CBR system in the decision-making process of bankruptcy prediction. While much research suggests a trade-off between improving prediction accuracy and explainability, our findings show a prospective research avenue in which an explainable model that thoroughly incorporates data attributes by design can reconcile the dilemma.

Suggested Citation

  • Wei Li & Wolfgang Karl Hardle & Stefan Lessmann, 2022. "A Data-driven Case-based Reasoning in Bankruptcy Prediction," Papers 2211.00921, arXiv.org.
  • Handle: RePEc:arx:papers:2211.00921
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.00921
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Härdle & Rouslan A. Moro & Dorothea Schäfer, 2005. "Predicting Bankruptcy with Support Vector Machines," SFB 649 Discussion Papers SFB649DP2005-009, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Csóka, Péter & Illés, Ferenc & Solymosi, Tamás, 2022. "On the Shapley value of liability games," European Journal of Operational Research, Elsevier, vol. 300(1), pages 378-386.
    3. Beddoe, Gareth R. & Petrovic, Sanja, 2006. "Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to personnel rostering," European Journal of Operational Research, Elsevier, vol. 175(2), pages 649-671, December.
    4. Alain Bensoussan & Radha Mookerjee & Vijay Mookerjee & Wei T. Yue, 2009. "Maintaining Diagnostic Knowledge-Based Systems: A Control-Theoretic Approach," Management Science, INFORMS, vol. 55(2), pages 294-310, February.
    5. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
    6. Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
    7. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    8. Zhuang, Zoe Y. & Churilov, Leonid & Burstein, Frada & Sikaris, Ken, 2009. "Combining data mining and case-based reasoning for intelligent decision support for pathology ordering by general practitioners," European Journal of Operational Research, Elsevier, vol. 195(3), pages 662-675, June.
    9. Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2021. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Post-Print hal-03331805, HAL.
    10. Peter N. Golder & Gerard J. Tellis, 2004. "Growing, Growing, Gone: Cascades, Diffusion, and Turning Points in the Product Life Cycle," Marketing Science, INFORMS, vol. 23(2), pages 207-218, December.
    11. Wei Li & Florentina Paraschiv & Georgios Sermpinis, 2022. "A data-driven explainable case-based reasoning approach for financial risk detection," Quantitative Finance, Taylor & Francis Journals, vol. 22(12), pages 2257-2274, December.
    12. Lidia Ceriani & Paolo Verme, 2012. "The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(3), pages 421-443, September.
    13. Opler, Tim & Pinkowitz, Lee & Stulz, Rene & Williamson, Rohan, 1999. "The determinants and implications of corporate cash holdings," Journal of Financial Economics, Elsevier, vol. 52(1), pages 3-46, April.
    14. Alexander W. Cappelen & Roland Iwan Luttens & Erik Ø. Sørensen & Bertil Tungodden, 2019. "Fairness in Bankruptcies: An Experimental Study," Management Science, INFORMS, vol. 67(6), pages 2832-2841, June.
    15. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    16. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    17. Nishihara, Michi & Shibata, Takashi, 2021. "The effects of asset liquidity on dynamic sell-out and bankruptcy decisions," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1017-1035.
    18. Deng, Pi-Sheng, 1996. "Using case-based reasoning approach to the support of ill-structured decisions," European Journal of Operational Research, Elsevier, vol. 93(3), pages 511-521, September.
    19. Lensberg, Terje & Eilifsen, Aasmund & McKee, Thomas E., 2006. "Bankruptcy theory development and classification via genetic programming," European Journal of Operational Research, Elsevier, vol. 169(2), pages 677-697, March.
    20. Wei Li & Florentina Paraschiv & Georgios Sermpinis, 2022. "A data-driven explainable case-based reasoning approach for financial risk detection," Quantitative Finance, Taylor & Francis Journals, vol. 22(12), pages 2257-2274, December.
    21. Bernanke, Ben S, 1981. "Bankruptcy, Liquidity, and Recession," American Economic Review, American Economic Association, vol. 71(2), pages 155-159, May.
    22. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    23. Bonnie W. Morris, 1994. "SCAN: A Case‐Based Reasoning Model for Generating Information System Control Recommendations," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(1), pages 47-63, January.
    24. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    25. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    26. A. Adam Ding & Shaonan Tian & Yan Yu & Hui Guo, 2012. "A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 990-1003, September.
    27. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    28. Balog, Dóra & Bátyi, Tamás László & Csóka, Péter & Pintér, Miklós, 2017. "Properties and comparison of risk capital allocation methods," European Journal of Operational Research, Elsevier, vol. 259(2), pages 614-625.
    29. Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
    30. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    2. Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
    3. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    4. Gianfranco Lombardo & Mattia Pellegrino & George Adosoglou & Stefano Cagnoni & Panos M. Pardalos & Agostino Poggi, 2022. "Machine Learning for Bankruptcy Prediction in the American Stock Market: Dataset and Benchmarks," Future Internet, MDPI, vol. 14(8), pages 1-23, August.
    5. Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
    6. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    7. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    8. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    9. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    10. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    11. Henri Arno & Klaas Mulier & Joke Baeck & Thomas Demeester, 2022. "Next-Year Bankruptcy Prediction from Textual Data: Benchmark and Baselines," Papers 2208.11334, arXiv.org.
    12. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    13. Ahrends, Meike & Drobetz, Wolfgang & Puhan, Tatjana Xenia, 2018. "Cyclicality of growth opportunities and the value of cash holdings," Journal of Financial Stability, Elsevier, vol. 37(C), pages 74-96.
    14. Bai, Qing & Tian, Shaonan, 2020. "Innovate or die: Corporate innovation and bankruptcy forecasts," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 88-108.
    15. Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
    16. Sigrist, Fabio & Hirnschall, Christoph, 2019. "Grabit: Gradient tree-boosted Tobit models for default prediction," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 177-192.
    17. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    18. Ekaterina Tzvetanova, 2019. "Adaptation of the Altman’s Corporate Insolvency Prediction Model – The Bulgarian Case," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 125-142.
    19. Antonio Pelaez-Verdet & Pilar Loscertales-Sanchez, 2021. "Key Ratios for Long-Term Prediction of Hotel Financial Distress and Corporate Default: Survival Analysis for an Economic Stagnation," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    20. Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.00921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.