IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.07849.html
   My bibliography  Save this paper

Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility

Author

Listed:
  • Alexander Lipton
  • Artur Sepp

Abstract

We combine the one-dimensional Monte Carlo simulation and the semi-analytical one-dimensional heat potential method to design an efficient technique for pricing barrier options on assets with correlated stochastic volatility. Our approach to barrier options valuation utilizes two loops. First we run the outer loop by generating volatility paths via the Monte Carlo method. Second, we condition the price dynamics on a given volatility path and apply the method of heat potentials to solve the conditional problem in closed-form in the inner loop. We illustrate the accuracy and efficacy of our semi-analytical approach by comparing it with the two-dimensional Monte Carlo simulation and a hybrid method, which combines the finite-difference technique for the inner loop and the Monte Carlo simulation for the outer loop. We apply our method for computation of state probabilities (Green function), survival probabilities, and values of call options with barriers. Our approach provides better accuracy and is orders of magnitude faster than the existing methods. s a by-product of our analysis, we generalize Willard's (1997) conditioning formula for valuation of path-independent options to path-dependent options and derive a novel expression for the joint probability density for the value of drifted Brownian motion and its running minimum.

Suggested Citation

  • Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
  • Handle: RePEc:arx:papers:2202.07849
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.07849
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca De Gennaro Aquino & Carole Bernard, 2019. "Semi-analytical prices for lookback and barrier options under the Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 715-741, December.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. Andrey Itkin & Alexander Lipton & Dmitry Muravey, 2021. "Generalized Integral Transforms in Mathematical Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 12147, January.
    4. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. P. Carr & A. Itkin & D. Muravey, 2022. "Semi-analytical pricing of barrier options in the time-dependent Heston model," Papers 2202.06177, arXiv.org.
    8. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Peter Carr & Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the time-dependent CEV and CIR models," Papers 2005.05459, arXiv.org.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    13. Alexander Lipton & Vadim Kaushansky, 2020. "On the first hitting time density for a reducible diffusion process," Quantitative Finance, Taylor & Francis Journals, vol. 20(5), pages 723-743, May.
    14. Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the Hull-White model," Papers 2004.09591, arXiv.org, revised Sep 2020.
    15. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    16. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    17. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    18. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    19. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    20. Andrey Itkin & Dmitry Muravey, 2021. "Semi-analytical pricing of barrier options in the time-dependent $\lambda$-SABR model," Papers 2109.02134, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Aimi & C. Guardasoni & L. Ortiz-Gracia & S. Sanfelici, 2023. "Fast Barrier Option Pricing by the COS BEM Method in Heston Model," Papers 2301.00648, arXiv.org, revised Jan 2023.
    2. Alexander Lipton & Adil Reghai, 2023. "SPX, VIX and scale-invariant LSV\footnote{Local Stochastic Volatility}," Papers 2302.08819, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, January.
    2. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    3. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    4. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    7. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    8. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    9. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    10. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    11. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    12. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    13. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    14. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    15. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    16. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    17. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    18. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    19. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    20. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.07849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.