IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.06221.html
   My bibliography  Save this paper

Adequacy of time-series reduction for renewable energy systems

Author

Listed:
  • Leonard Goke
  • Mario Kendziorski

Abstract

To reduce computational complexity, macro-energy system models commonly implement reduced time-series data. For renewable energy systems dependent on seasonal storage and characterized by intermittent renewables, like wind and solar, adequacy of time-series reduction is in question. Using a capacity expansion model, we evaluate different methods for creating and implementing reduced time-series regarding loss of load and system costs. Results show that adequacy greatly depends on the length of the reduced time-series and how it is implemented into the model. Implementation as a chronological sequence with re-scaled time-steps prevents loss of load best but imposes a positive bias on seasonal storage resulting in an overestimation of system costs. Compared to chronological sequences, grouped periods require more time so solve for the same number of time-steps, because the approach requires additional variables and constraints. Overall, results suggest further efforts to improve time-series reduction and other methods for reducing computational complexity.

Suggested Citation

  • Leonard Goke & Mario Kendziorski, 2021. "Adequacy of time-series reduction for renewable energy systems," Papers 2101.06221, arXiv.org, revised Aug 2021.
  • Handle: RePEc:arx:papers:2101.06221
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.06221
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    2. Growitsch Christian & Malischek Raimund & Nick Sebastian & Wetzel Heike, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, De Gruyter, vol. 16(3), pages 307-323, August.
    3. Karlo Hainsch & Leonard Göke & Claudia Kemfert & Pao-Yu Oei & Christian von Hirschhausen, 2020. "European Green Deal: Using Ambitious Climate Targets and Renewable Energy to Climb out of the Economic Crisis," DIW Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 10(28/29), pages 303-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klemm, Christian & Wiese, Frauke & Vennemann, Peter, 2023. "Model-based run-time and memory reduction for a mixed-use multi-energy system model with high spatial resolution," Applied Energy, Elsevier, vol. 334(C).
    2. Kuepper, Lucas Elias & Teichgraeber, Holger & Baumgärtner, Nils & Bardow, André & Brandt, Adam R., 2022. "Wind data introduce error in time-series reduction for capacity expansion modelling," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Göke, Leonard & Kendziorski, Mario, 2022. "Adequacy of time-series reduction for renewable energy systems," Energy, Elsevier, vol. 238(PA).
    2. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    3. Iegor Riepin & Thomas Mobius & Felix Musgens, 2020. "Modelling uncertainty in coupled electricity and gas systems -- is it worth the effort?," Papers 2008.07221, arXiv.org, revised Sep 2020.
    4. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    5. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    6. Guo, Dongmei & Li, Qin & Liu, Peng & Shi, Xunpeng & Yu, Jian, 2023. "Power shortage and firm performance: Evidence from a Chinese city power shortage index," Energy Economics, Elsevier, vol. 119(C).
    7. Casimir Lorenz & Clemens Gerbaulet, 2017. "Wind Providing Balancing Reserves: An Application to the German Electricity System of 2025," Discussion Papers of DIW Berlin 1655, DIW Berlin, German Institute for Economic Research.
    8. Sinan Küfeoğlu & Niyazi Gündüz & Hao Chen & Matti Lehtonen, 2018. "Shadow Pricing of Electric Power Interruptions for Distribution System Operators in Finland," Energies, MDPI, vol. 11(7), pages 1-14, July.
    9. Riepin, Iegor & Möbius, Thomas & Müsgens, Felix, 2021. "Modelling uncertainty in coupled electricity and gas systems—Is it worth the effort?," Applied Energy, Elsevier, vol. 285(C).
    10. Wolf, André & Wenzel, Lars, 2016. "Regional diversity in the costs of electricity outages: Results for German counties," Utilities Policy, Elsevier, vol. 43(PB), pages 195-205.
    11. Mathias Mier & Valeriya Azarova, 2022. "Investment Cost Specifications Revisited," ifo Working Paper Series 376, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    12. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    13. Holz, Franziska & Scherwath, Tim & Crespo del Granado, Pedro & Skar, Christian & Olmos, Luis & Ploussard, Quentin & Ramos, Andrés & Herbst, Andrea, 2021. "A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104, pages 1-18.
    14. Bertsch, Joachim & Brown, Tom & Hagspiel, Simeon & Just, Lisa, 2016. "The relevance of grid expansion under zonal markets," EWI Working Papers 2015-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    15. Benjamin Böcker & Robin Leisen & Christoph Weber, "undated". "Optimal capacity adjustments in electricity market models – an iterative approach based on operational margins and the relevant supply stack," EWL Working Papers 1806, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    16. Gunduz, N & Kufeoglu, S. & Winzer, C. & Lehtonen, M., 2018. "Regional Differences in Economic Impacts of Power Outages in Finland," Cambridge Working Papers in Economics 1841, Faculty of Economics, University of Cambridge.
    17. Hagspiel, Simeon, 2016. "Supply Chain Reliability and the Role of Individual Suppliers," EWI Working Papers 2016-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Joachim Bertsch, & Tom Brown & Simeon Hagspiel & Lisa Just, 2017. "The relevance of grid expansion under zonal markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    19. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.
    20. Becker, Sophia & Schober, Dominik & Wassermann, Sandra, 2016. "How to approach consumers’ nonmonetary evaluation of electricity supply security? The case of Germany from a multidisciplinary perspective," Utilities Policy, Elsevier, vol. 42(C), pages 74-84.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.06221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.