IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.00090.html
   My bibliography  Save this paper

A Simple extension of Dematerialization Theory: Incorporation of Technical Progress and the Rebound Effect

Author

Listed:
  • Christopher L. Magee
  • Tessaleno C. Devezas

Abstract

Dematerialization is the reduction in the quantity of materials needed to produce something useful over time. Dematerialization fundamentally derives from ongoing increases in technical performance but it can be counteracted by demand rebound - increases in usage because of increased value (or decreased cost) that also results from increasing technical performance. A major question then is to what extent technological performance improvement can offset and is offsetting continuously increasing economic consumption. This paper contributes to answering this question by offering some simple quantitative extensions to the theory of dematerialization. The paper then empirically examines the materials consumption trends as well as cost trends for a large set of materials and a few modern artifacts over the past decades. In each of 57 cases examined, the particular combinations of demand elasticity and technical performance rate improvement are not consistent with dematerialization. Overall, the theory extension and empirical examination indicate that there is no dematerialization occurring even for cases of information technology with rapid technical progress. Thus, a fully passive policy stance that relies on unfettered technological change is not supported by our results.

Suggested Citation

  • Christopher L. Magee & Tessaleno C. Devezas, 2016. "A Simple extension of Dematerialization Theory: Incorporation of Technical Progress and the Rebound Effect," Papers 1602.00090, arXiv.org.
  • Handle: RePEc:arx:papers:1602.00090
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.00090
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    2. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    3. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    2. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    3. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    4. Lizhuang Liang & Feng Chen & Lei Shi & Shukui Niu, 2018. "NDVI-derived forest area change and its driving factors in China," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    5. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    6. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    7. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    8. Don Clifton, 2012. "Sustainable Business: Are We Heading in the Right Direction?," Sustainability, MDPI, vol. 4(4), pages 1-18, April.
    9. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    10. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    11. Gregory Casey & Oded Galor, 2016. "Is economic growth compatible with reductions in carbon emissions? Investigating the impacts of diminished population growth," Working Papers 2016-8, Brown University, Department of Economics.
    12. Jaewon Lim & DooHwan Won, 2019. "Impact of CARB’s Tailpipe Emission Standard Policy on CO 2 Reduction among the U.S. States," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    13. Bortoluzzi, Mirian & Furlan, Marcelo & dos Reis Neto, José Francisco, 2022. "Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1316-1326.
    14. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    15. Gregory Casey & Oded Galor, 2016. "Population Growth and Carbon Emissions," NBER Working Papers 22885, National Bureau of Economic Research, Inc.
    16. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    17. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    18. Michaela Vourvoulia & Athanasios Kampas, 2024. "Are democratic regime and the magnitude of the informal economy robust determinants of human impacts on the environment? An extreme bounds analysis," Economics and Politics, Wiley Blackwell, vol. 36(1), pages 611-629, March.
    19. Yang, Chunyu & Wang, Yu & Dong, Zhanfeng, 2020. "Evaluating the impact of denitrification tariff on energy-related NOx generation in China: Policy effects and regional disparities," Energy Policy, Elsevier, vol. 142(C).
    20. Eric Kemp-Benedict, 2011. "Confronting the Kaya Identity with Investment and Capital Stocks," Papers 1112.0758, arXiv.org, revised Jun 2012.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.00090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.