IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp1316-1326.html
   My bibliography  Save this article

Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning

Author

Listed:
  • Bortoluzzi, Mirian
  • Furlan, Marcelo
  • dos Reis Neto, José Francisco

Abstract

The aim of this study was to assess the environmental impact of hydroelectric power generation projects and classify them according to their scale of environmental impact. To achieve this objective, the combination of Data Envelopment Analysis (DEA) and Artificial Neural Networks (ANN) techniques was applied to 53 hydroelectric power plant projects in the evaluation phase in Brazil. The main results were: a) the proposed index indicates that 7 of the 10 worst hydroelectric projects are of the Large Hydropower Plant (LHP) type; b) the neural model for predicting the environmental impact of hydroelectric projects has an error of less than 0.001; c) the neural model for classifying hydroelectric projects in terms of their environmental impact reached a performance of 99.0% accuracy. In general, this study contributes to the use of a hybrid decision-making approach based on a combination of DEA-ANN for energy policies, in addition to enabling an improvement in the evaluation of hydroelectric generation projects.

Suggested Citation

  • Bortoluzzi, Mirian & Furlan, Marcelo & dos Reis Neto, José Francisco, 2022. "Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1316-1326.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1316-1326
    DOI: 10.1016/j.renene.2022.10.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122015609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    2. Barros, Carlos Pestana, 2008. "Efficiency analysis of hydroelectric generating plants: A case study for Portugal," Energy Economics, Elsevier, vol. 30(1), pages 59-75, January.
    3. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.
    4. Blanco, G. & Amarilla, R. & Martinez, A. & Llamosas, C. & Oxilia, V., 2017. "Energy transitions and emerging economies: A multi-criteria analysis of policy options for hydropower surplus utilization in Paraguay," Energy Policy, Elsevier, vol. 108(C), pages 312-321.
    5. Almeida Prado, Fernando & Athayde, Simone & Mossa, Joann & Bohlman, Stephanie & Leite, Flavia & Oliver-Smith, Anthony, 2016. "How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1132-1136.
    6. Athayde, Simone & Duarte, Carla G. & Gallardo, Amarilis L.C.F. & Moretto, Evandro M. & Sangoi, Luisa A. & Dibo, Ana Paula A. & Siqueira-Gay, Juliana & Sánchez, Luis E., 2019. "Improving policies and instruments to address cumulative impacts of small hydropower in the Amazon," Energy Policy, Elsevier, vol. 132(C), pages 265-271.
    7. Wang, Bing & Nistor, Ioan & Murty, Tad & Wei, Yi-Ming, 2014. "Efficiency assessment of hydroelectric power plants in Canada: A multi criteria decision making approach," Energy Economics, Elsevier, vol. 46(C), pages 112-121.
    8. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    9. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale," Renewable Energy, Elsevier, vol. 155(C), pages 396-406.
    10. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Cowan, Wendy N. & Chang, Tsangyao & Inglesi-Lotz, Roula & Gupta, Rangan, 2014. "The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries," Energy Policy, Elsevier, vol. 66(C), pages 359-368.
    13. Ávila, Leandro & Mine, Miriam R.M & Kaviski, Eloy & Detzel, Daniel H.M., 2021. "Evaluation of hydro-wind complementarity in the medium-term planning of electrical power systems by joint simulation of periodic streamflow and wind speed time series: A Brazilian case study," Renewable Energy, Elsevier, vol. 167(C), pages 685-699.
    14. Sgarbi, Felipe de Albuquerque & Uhlig, Alexandre & Simões, André Felipe & Goldemberg, José, 2019. "An assessment of the socioeconomic externalities of hydropower plants in Brazil," Energy Policy, Elsevier, vol. 129(C), pages 868-879.
    15. Pracheil, Brenda M. & Levine, Aaron L. & Curtis, Taylor L. & Aldrovandi, Matthew S.P. & Uría-Martínez, Rocío & Johnson, Megan M. & Welch, Timothy, 2022. "Influence of project characteristics, regulatory pathways, and environmental complexity on hydropower licensing timelines in the US," Energy Policy, Elsevier, vol. 162(C).
    16. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    17. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    18. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    19. Mirian Bortoluzzi & Marcelo Furlan & Simone Geitenes Colombo & Tatiele Martins Amaral & Celso Correia de Souza & José Francisco dos Reis Neto & Josimar Fernandes de França, 2021. "Combining Value-Focused Thinking and PROMETHEE Techniques for Selecting a Portfolio of Distributed Energy Generation Projects in the Brazilian Electricity Sector," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
    20. Mary Robinson & Tara Shine, 2018. "Author Correction: Achieving a climate justice pathway to 1.5 °C," Nature Climate Change, Nature, vol. 8(10), pages 921-921, October.
    21. Guégan, Marion & Uvo, Cintia B. & Madani, Kaveh, 2012. "Developing a module for estimating climate warming effects on hydropower pricing in California," Energy Policy, Elsevier, vol. 42(C), pages 261-271.
    22. Rahman, Mohammad Mafizur & Alam, Khosrul, 2021. "Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh," Renewable Energy, Elsevier, vol. 172(C), pages 1063-1072.
    23. Ascher, William, 2021. "Rescuing responsible hydropower projects," Energy Policy, Elsevier, vol. 150(C).
    24. Entani, Tomoe & Maeda, Yutaka & Tanaka, Hideo, 2002. "Dual models of interval DEA and its extension to interval data," European Journal of Operational Research, Elsevier, vol. 136(1), pages 32-45, January.
    25. Zurano-Cervelló, Patricia & Pozo, Carlos & Mateo-Sanz, Josep María & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2019. "Sustainability efficiency assessment of the electricity mix of the 28 EU member countries combining data envelopment analysis and optimized projections," Energy Policy, Elsevier, vol. 134(C).
    26. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    27. Halkos, George E. & Tzeremes, Nickolaos G., 2012. "Analyzing the Greek renewable energy sector: A Data Envelopment Analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2884-2893.
    28. Mary Robinson & Tara Shine, 2018. "Achieving a climate justice pathway to 1.5 °C," Nature Climate Change, Nature, vol. 8(7), pages 564-569, July.
    29. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    30. Ometto, Jean P. & Cimbleris, André C.P. & dos Santos, Marco A. & Rosa, Luiz P. & Abe, Donato & Tundisi, José G. & Stech, José L. & Barros, Nathan & Roland, Fábio, 2013. "Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome," Energy Policy, Elsevier, vol. 58(C), pages 109-116.
    31. Haddad, Mohamed S., 2011. "Capacity choice and water management in hydroelectricity systems," Energy Economics, Elsevier, vol. 33(2), pages 168-177, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. Fallahi, Alireza & Ebrahimi, Reza & Ghaderi, S.F., 2011. "Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study," Energy, Elsevier, vol. 36(11), pages 6398-6405.
    4. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    5. Gobbo, Simone Cristina de Oliveira & Mariano, Enzo Barberio & Gobbo Jr., José Alcides, 2021. "Combining social network and data envelopment analysis: A proposal for a Selection Employment Contracts Effectiveness index in healthcare network applications," Omega, Elsevier, vol. 103(C).
    6. Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
    7. Chilingerian, Jon A., 1995. "Evaluating physician efficiency in hospitals: A multivariate analysis of best practices," European Journal of Operational Research, Elsevier, vol. 80(3), pages 548-574, February.
    8. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    9. Reuben Elan & Verma Bharat Bhushan & Bhat Ramesh, 2001. "Hospital Efficiency: An Empirical Analysis of District and Grant-in-Aid Hospitals in Gujarat," IIMA Working Papers WP2001-07-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    10. Tenente, Marcos & Henriques, Carla & da Silva, Patrícia Pereira, 2020. "Eco-efficiency assessment of the electricity sector: Evidence from 28 European Union countries," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 293-314.
    11. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    12. Barros, Carlos Pestana, 2008. "Airports in Argentina: Technical efficiency in the context of an economic crisis," Journal of Air Transport Management, Elsevier, vol. 14(6), pages 315-319.
    13. Hyungguen Park & Changhee Kim, 2018. "Do Shifts in Renewable Energy Operation Policy Affect Efficiency: Korea’s Shift from FIT to RPS and Its Results," Sustainability, MDPI, vol. 10(6), pages 1-14, May.
    14. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    15. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    16. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    17. Lee, Boon L. & Worthington, Andrew C., 2014. "Technical efficiency of mainstream airlines and low-cost carriers: New evidence using bootstrap data envelopment analysis truncated regression," Journal of Air Transport Management, Elsevier, vol. 38(C), pages 15-20.
    18. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    19. Sai, Rockson & Lin, Boqiang, 2022. "Productivity assessment of power generation in Kenya: What are the impacts?," Energy, Elsevier, vol. 254(PA).
    20. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1316-1326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.