IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0805.2096.html
   My bibliography  Save this paper

GARCH modelling in continuous time for irregularly spaced time series data

Author

Listed:
  • Ross A. Maller
  • Gernot Muller
  • Alex Szimayer

Abstract

The discrete-time GARCH methodology which has had such a profound influence on the modelling of heteroscedasticity in time series is intuitively well motivated in capturing many `stylized facts' concerning financial series, and is now almost routinely used in a wide range of situations, often including some where the data are not observed at equally spaced intervals of time. However, such data is more appropriately analyzed with a continuous-time model which preserves the essential features of the successful GARCH paradigm. One possible such extension is the diffusion limit of Nelson, but this is problematic in that the discrete-time GARCH model and its continuous-time diffusion limit are not statistically equivalent. As an alternative, Kl\"{u}ppelberg et al. recently introduced a continuous-time version of the GARCH (the `COGARCH' process) which is constructed directly from a background driving L\'{e}vy process. The present paper shows how to fit this model to irregularly spaced time series data using discrete-time GARCH methodology, by approximating the COGARCH with an embedded sequence of discrete-time GARCH series which converges to the continuous-time model in a strong sense (in probability, in the Skorokhod metric), as the discrete approximating grid grows finer. This property is also especially useful in certain other applications, such as options pricing. The way is then open to using, for the COGARCH, similar statistical techniques to those already worked out for GARCH models and to illustrate this, an empirical investigation using stock index data is carried out.

Suggested Citation

  • Ross A. Maller & Gernot Muller & Alex Szimayer, 2008. "GARCH modelling in continuous time for irregularly spaced time series data," Papers 0805.2096, arXiv.org.
  • Handle: RePEc:arx:papers:0805.2096
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0805.2096
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Szimayer, Alex & Maller, Ross A., 2007. "Finite approximation schemes for Lévy processes, and their application to optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1422-1447, October.
    3. Jan Kallsen & Murad S. Taqqu, 1998. "Option Pricing in ARCH‐type Models," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 13-26, January.
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    5. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marín Díazaraque, Juan Miguel & Rodríguez-Bernal, M. T. & Romero, E., 2016. "ABC and Hamiltonian Monte-Carlo methods in COGARCH models," DES - Working Papers. Statistics and Econometrics. WS ws1601, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Francesco Bianchi & Lorenzo Mercuri & Edit Rroji, 2022. "Portfolio Selection with Irregular Time Grids: an example using an ICA-COGARCH(1, 1) approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 57-85, March.
    3. Enrico Bibbona & Ilia Negri, 2015. "Higher Moments and Prediction-Based Estimation for the COGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 891-910, December.
    4. Léo Parent, 2022. "The EWMA Heston model," Post-Print hal-04431111, HAL.
    5. Stelzer, Robert, 2009. "First jump approximation of a Lévy-driven SDE and an application to multivariate ECOGARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1932-1951, June.
    6. Müller, Gernot & Durand, Robert B. & Maller, Ross A., 2011. "The risk-return tradeoff: A COGARCH analysis of Merton's hypothesis," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 306-320, March.
    7. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    8. Ghysels, Eric, 2014. "Factor Analysis with Large Panels of Volatility Proxies," CEPR Discussion Papers 10034, C.E.P.R. Discussion Papers.
    9. Lee, Oesook, 2012. "V-uniform ergodicity of a continuous time asymmetric power GARCH(1,1) model," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 812-817.
    10. Marín Díazaraque, Juan Miguel & Rodríguez Bernal, M. T. & Romero, Eva, 2013. "Data cloning estimation of GARCH and COGARCH models," DES - Working Papers. Statistics and Econometrics. WS ws132723, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Yildirim, Yavuz & Unal, Gazanfer, 2010. "From Discrete to Continuous: Modeling Volatility of the Istanbul Stock Exchange Market with GARCH and COGARCH," MPRA Paper 27946, University Library of Munich, Germany.
    12. Thiago do Rêgo Sousa & Robert Stelzer, 2022. "Moment‐based estimation for the multivariate COGARCH(1,1) process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 681-717, June.
    13. Iacus, Stefano M. & Mercuri, Lorenzo & Rroji, Edit, 2017. "COGARCH(p, q): Simulation and Inference with the yuima Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i04).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    2. Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
    3. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    4. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    5. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. Zhi-Fu Mi & Yi-Ming Wei & Bao-Jun Tang & Rong-Gang Cong & Hao Yu & Hong Cao & Dabo Guan, 2017. "Risk assessment of oil price from static and dynamic modelling approaches," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 929-939, February.
    9. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    10. Alexandru Badescu & Robert J. Elliott & Juan-Pablo Ortega, 2012. "Quadratic hedging schemes for non-Gaussian GARCH models," Papers 1209.5976, arXiv.org, revised Dec 2013.
    11. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    12. Jaime A. Londoño, 2003. "Parametric Estimation Of Diffusion Processes Sampled At First Exit Time," Econometrics 0305002, University Library of Munich, Germany, revised 16 Feb 2004.
    13. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
    14. Bandi, Federico M., 2002. "Short-term interest rate dynamics: a spatial approach," Journal of Financial Economics, Elsevier, vol. 65(1), pages 73-110, July.
    15. Trifi Amine, 2006. "Issues of Aggregation Over Time of Conditional Heteroscedastic Volatility Models: What Kind of Diffusion Do We Recover?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(4), pages 1-26, December.
    16. Duan, Jin-Chuan & Pliska, Stanley R., 2004. "Option valuation with co-integrated asset prices," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 727-754, January.
    17. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    18. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    19. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    20. Donggyu Kim, 2016. "Statistical Inference for Unified Garch–Itô Models with High-Frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 513-532, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0805.2096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.