IDEAS home Printed from https://ideas.repec.org/p/ags/rffdps/10483.html
   My bibliography  Save this paper

Cost-Effective NOx Control in the Eastern United States

Author

Listed:
  • Krupnick, Alan J.
  • McConnell, Virginia D.
  • Cannon, Matthew
  • Stoessell, Terrell
  • Batz, Michael B.

Abstract

Reducing nitrogen oxide (NOx) emissions in the eastern United States has become the focus of efforts to meet ozone air quality goals and will be useful for reducing particulate matter (PM) concentrations in the future. This paper addresses many aspects of the debate over the appropriate approach for obtaining reductions in NOx emissions from point sources beyond those called for in the Clean Air Act Amendments of 1990. Data on NOx control technologies and their associated costs, spatial models linking NOx emissions and air quality, and benefit estimates of the health effects of changes in ozone and PM concentrations are combined to allow an analysis of alternative policies in thirteen states in the eastern United States. The first part of the study examines the cost and other consequences of a command-and-control approach embodied in the Environmental Protection Agency's (EPA) NOx SIP call, which envisions large reductions in NOx from electric utilities and other point sources. These results are compared to the alternative policy of ton-for-ton NOx emissions trading, similar to that proposed by the EPA for utilities. We find that emission reduction targets can be met at roughly 50% cost savings under a trading program when there are no transaction costs. The paper examines a number of alternative economic incentive policies that have the potential to improve upon the utility NOx trading plan proposed by EPA, including incorporation of other point sources in the trading program, incorporation of ancillary PM benefits to ozone reductions in the trading program, and trading on the basis of ozone exposures that incorporates the spatial impact of emissions on ozone levels. For the latter analysis, we examine spatially differentiated permit systems for reducing ozone exposures under different and uncertain meteorological conditions, including an empirical analysis of the trade-off between the reliability (or degree of certainty) of meeting ozone exposure reduction targets and the cost of NOx control. Finally, several policies that combine costs and health benefits from both ozone and PM reductions are compared to command-and-control and single-pollutant trading policies. The first of these is a full multipollutant trading system that achieves a health benefit goal, with the interpollutant trading ratios governed by the ratio of unit health benefits of ozone and PM. Then, a model that maximizes aggregate benefits from both ozone and PM exposure reductions net of the costs of NOx controls is estimated. EPA's program appears to be reasonably cost-effective compared to all of the other more complex trading programs we examined. It may even be considered an optimal policy that maximizes net aggregate benefits if the high estimate of benefits is used in which mortality risk is linked to ozone exposure. Without this controversial assumption, however, we find that EPA's NOx reduction target is far too large.

Suggested Citation

  • Krupnick, Alan J. & McConnell, Virginia D. & Cannon, Matthew & Stoessell, Terrell & Batz, Michael B., 2000. "Cost-Effective NOx Control in the Eastern United States," Discussion Papers 10483, Resources for the Future.
  • Handle: RePEc:ags:rffdps:10483
    DOI: 10.22004/ag.econ.10483
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/10483/files/dp000018.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.10483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jones-Lee, M W & Hammerton, M & Philips, P R, 1985. "The Value of Safety: Results of a National Sample Survey," Economic Journal, Royal Economic Society, vol. 95(377), pages 49-72, March.
    2. Krupnick, Alan & Austin, David & Morton, Brian & McConnell, Virginia & Stoessell, Terrell & Cannon, Matthew, 1998. "The Chesapeake Bay and the Control of NOx Emissions: A Policy Analysis," RFF Working Paper Series dp-98-46, Resources for the Future.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao-Ning Liao, 2007. "Modelling a mixed system of air pollution fee and tradable permits for controlling nitrogen oxide: a case study of Taiwan ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 475-490, December.
    2. Chao-Ning Liao, 2009. "Technology adoption decisions under a mixed regulatory system of tradable permits and air pollution fees for the control of Total Suspended Particulates in Taiwan," Journal of Regulatory Economics, Springer, vol. 35(2), pages 135-153, April.
    3. Shih, Jhih-Shyang & Krupnick, Alan J. & Bergin, Michelle S. & Russell, Armistead G., 2004. "Source-Receptor Relationships for Ozone and Fine Particulates in the Eastern United States," Discussion Papers 10572, Resources for the Future.
    4. Burtraw, Dallas & Bharvirkar, Ranjit & McGuinness, Meghan, 2001. "Uncertainty and the Cost-Effectiveness of Regional NOx Emissions Reductions from Electricity Generation," Discussion Papers 10846, Resources for the Future.
    5. Craig, Michael & McDonald-Buller, Elena & Webster, Mort, 2016. "Technology adoption under time-differentiated market-based instruments for pollution control," Energy Economics, Elsevier, vol. 60(C), pages 23-34.
    6. Krupnick, Alan & Shih, Jhih-Shyang & Bergin, S. & Russell, Armistead, 2003. "Controlling Ozone and Fine Particulates: Cost Benefit Analysis with Meteorological Variability," RFF Working Paper Series dp-03-55, Resources for the Future.
    7. Liao, Chao-Ning, 2007. "Modelling a mixed system of air pollution fee and tradable permits for controlling nitrogen oxide: a case study of Taiwan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 1-16.
    8. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    9. Burtraw, Dallas & Palmer, Karen & Bharvirkar, Ranjit & Paul, Anthony, 2001. "Cost-Effective Reduction of NOx Emissions from Electricity Generation," RFF Working Paper Series dp-00-55-rev, Resources for the Future.
    10. Welsch, Heinz, 2007. "Environmental welfare analysis: A life satisfaction approach," Ecological Economics, Elsevier, vol. 62(3-4), pages 544-551, May.
    11. Rezek, Jon P. & Campbell, Randall C., 2007. "Cost estimates for multiple pollutants: A maximum entropy approach," Energy Economics, Elsevier, vol. 29(3), pages 503-519, May.
    12. Dallas Burtraw & Ranjit Bharvirkar & DMeghan McGuinness, 2003. "Uncertainty and the Net Benefits of Emissions Reductions of Nitrogen Oxides from Electricity Generation," Land Economics, University of Wisconsin Press, vol. 79(3), pages 382-401.
    13. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    14. Stavins, Robert & Newell, Richard, 2000. "Abatement-Cost Heterogeneity and Anticipated Savings from Market-Based Environmental Policies," Working Paper Series rwp00-006, Harvard University, John F. Kennedy School of Government.
    15. Douglas A. Carr, 2011. "The Intergovernmental Fiscal Effects of the Clean Air Act," Public Finance Review, , vol. 39(6), pages 810-830, November.
    16. Fowlie, Meredith, 2005. "Emissions Trading, Electricity Industry Restructuring and Investment in Pollution Abatement," 2005 Annual meeting, July 24-27, Providence, RI 19265, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. Werner Antweiler & Sumeet Gulati, 2013. "Market-Based Policies for Green Motoring in Canada," Canadian Public Policy, University of Toronto Press, vol. 39(s2), pages 81-94, August.
    18. Linn, Joshua, 2010. "The effect of cap-and-trade programs on firms' profits: Evidence from the Nitrogen Oxides Budget Trading Program," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 1-14, January.
    19. Burtraw, Dallas & Evans, David, 2003. "The Evolution of NOx Control Policy for Coal-Fired Power Plants in the United States," RFF Working Paper Series dp-03-23, Resources for the Future.
    20. Antweiler, Werner & Gulati, Sumeet, 2015. "Scrapping for clean air: Emissions savings from the BC SCRAP-IT program," Journal of Environmental Economics and Management, Elsevier, vol. 71(C), pages 198-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    2. James K. Hammitt, 2020. "Valuing mortality risk in the time of COVID-19," Journal of Risk and Uncertainty, Springer, vol. 61(2), pages 129-154, October.
    3. Robinson, Angela & Covey, Judith & Spencer, Anne & Loomes, Graham, 2010. "Are some deaths worse than others? The effect of 'labelling' on people's perceptions," Journal of Economic Psychology, Elsevier, vol. 31(3), pages 444-455, June.
    4. W. Michael Hanemann, 1994. "Valuing the Environment through Contingent Valuation," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 19-43, Fall.
    5. Krupnick, Alan & Austin, David & Morton, Brian & McConnell, Virginia & Stoessell, Terrell & Cannon, Matthew, 1998. "The Chesapeake Bay and the Control of NOx Emissions: A Policy Analysis," RFF Working Paper Series dp-98-46, Resources for the Future.
    6. Georges Dionne & Paul Lanoie, 2002. "How to Make a Public Choice About the Value of a Statistical Life: The Case of Road Safety," Cahiers de recherche 02-04, HEC Montréal, Institut d'économie appliquée.
    7. Markus König & Christian Pfarr & Peter Zweifel, 2014. "Mutual Altruism: Evidence from Alzheimer Patients and Their Spouse Caregivers," Advances in Health Economics and Health Services Research, in: Preference Measurement in Health, volume 24, pages 141-160, Emerald Group Publishing Limited.
    8. James Hammitt & Jin-Tan Liu, 2004. "Effects of Disease Type and Latency on the Value of Mortality Risk," Journal of Risk and Uncertainty, Springer, vol. 28(1), pages 73-95, January.
    9. Henrik Andersson & James Hammitt & Gunnar Lindberg & Kristian Sundström, 2013. "Willingness to Pay and Sensitivity to Time Framing: A Theoretical Analysis and an Application on Car Safety," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 437-456, November.
    10. Krupnick, Alan & Alberini, Anna & Cropper, Maureen & Simon, Nathalie & O'Brien, Bernie & Goeree, Ron & Heintzelman, Martin, 2002. "Age, Health and the Willingness to Pay for Mortality Risk Reductions: A Contingent Valuation Survey of Ontario Residents," Journal of Risk and Uncertainty, Springer, vol. 24(2), pages 161-186, March.
    11. Abdulai, Awudu & Owusu, Victor & Bakang, John-Eudes A., 2011. "Adoption of safer irrigation technologies and cropping patterns: Evidence from Southern Ghana," Ecological Economics, Elsevier, vol. 70(7), pages 1415-1423, May.
    12. Anna Alberini & Alan Krupnick & Maureen Cropper & Nathalie Simon & Joseph Cook, 2002. "The Willingness to Pay for Mortality Risk Reductions: A Comparison of the United States and Canada," CESifo Working Paper Series 668, CESifo.
    13. Alan Diener & Bernie O'Brien & Amiram Gafni, 1998. "Health care contingent valuation studies: a review and classification of the literature," Health Economics, John Wiley & Sons, Ltd., vol. 7(4), pages 313-326, June.
    14. Isaac Ehrlich & Yong Yin, 2005. "Explaining Diversities in Age-Specific Life Expectancies and Values of Life Saving: A Numerical Analysis," Journal of Risk and Uncertainty, Springer, vol. 31(2), pages 129-162, September.
    15. Alberini, Anna & Ščasný, Milan, 2018. "The benefits of avoiding cancer (or dying from cancer): Evidence from a four- country study," Journal of Health Economics, Elsevier, vol. 57(C), pages 249-262.
    16. Gregory Poe & Richard Bishop, 1999. "Valuing the Incremental Benefits of Groundwater Protection when Exposure Levels are Known," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 13(3), pages 341-367, April.
    17. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    18. M. P. McCullough & T. L. Marsh & R. Huffaker, 2013. "Reconstructing market reactions to consumption harms," Applied Economics Letters, Taylor & Francis Journals, vol. 20(2), pages 173-179, February.
    19. Henrik Andersson & Nicolas Treich, 2011. "The Value of a Statistical Life," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 17, Edward Elgar Publishing.
    20. Flores, Nicholas E., 2002. "Non-paternalistic altruism and welfare economics," Journal of Public Economics, Elsevier, vol. 83(2), pages 293-305, February.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:rffdps:10483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.