IDEAS home Printed from https://ideas.repec.org/p/ags/eaae11/114406.html
   My bibliography  Save this paper

The GHG Balance of Biofuels Taking into Account Land Use Change (Power Point)

Author

Listed:
  • Lange, Mareike

Abstract

The contribution of biofuels to the saving of greenhouse gas (GHG) emissions has recently been questioned because of emissions resulting from land use change (LUC) for bioenergy feedstock production. We investigate how the inclusion of the carbon effect of LUC into the carbon accounting framework, as scheduled by the European Commission, impacts on land use choices for an expanding biofuel feedstock production. We first illustrate the change in the carbon balances of various biofuels, using methodology and data from the IPCC Guidelines for National Greenhouse Gas Inventories. It becomes apparent that the conversion of natural land, apart from grassy savannahs, impedes meeting the EU’s 35% minimum emissions reduction target for biofuels. We show that the current accounting method mainly promotes biofuel feedstock production on former cropland, thus increasing the competition between food and fuel production on the currently available cropland area. We further discuss whether it is profitable to use degraded land for commercial bioenergy production as requested by the European Commission to avoid undesirable LUC and conclude that the current regulation provides little incentive to use such land. The exclusive consideration of LUC for bioenergy production minimizes direct LUC at the expense of increasing indirect LUC.

Suggested Citation

  • Lange, Mareike, 2011. "The GHG Balance of Biofuels Taking into Account Land Use Change (Power Point)," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114406, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae11:114406
    DOI: 10.22004/ag.econ.114406
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/114406/files/Lange_Mareike_329.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.114406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Goldemberg, José & Guardabassi, Patricia, 2009. "Are biofuels a feasible option?," Energy Policy, Elsevier, vol. 37(1), pages 10-14, January.
    2. Kopmann, Angela & Kretschmer, Bettina & Lange, Mareike, 2009. "Effiziente Nutzung von Biomasse durch einen globalen Kohlenstoffpreis Empfehlungen für eine koordinierte Bioenergiepolitik," Kiel Policy Brief 14, Kiel Institute for the World Economy (IfW Kiel).
    3. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    4. Harlan Grant Cohen, 0. "Nations and Markets," Journal of International Economic Law, Oxford University Press, vol. 23(4), pages 793-815.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    3. Boucher, Philip, 2012. "The role of controversy, regulation and engineering in UK biofuel development," Energy Policy, Elsevier, vol. 42(C), pages 148-154.
    4. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    5. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    6. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations," Energy Policy, Elsevier, vol. 47(C), pages 384-397.
    7. Baumber, Alex, 2017. "Enhancing ecosystem services through targeted bioenergy support policies," Ecosystem Services, Elsevier, vol. 26(PA), pages 98-110.
    8. Delzeit, Ruth & Lange, Mareike, 2011. "Biofuel policies and indirect land use change," Kiel Policy Brief 37, Kiel Institute for the World Economy (IfW Kiel).
    9. Söder, Mareike, 2014. "EU biofuel policies in practice: A carbon map for the Brazilian Cerrado," Kiel Working Papers 1966, Kiel Institute for the World Economy (IfW Kiel).
    10. Lange, Mareike, 2013. "EU biofuel policies in practise: A carbon map for Kalimantan and Sumatra," Kiel Working Papers 1863, Kiel Institute for the World Economy (IfW Kiel).
    11. Duarte, Alexandra & Sarache, William & Costa, Yasel, 2016. "Biofuel supply chain design from Coffee Cut Stem under environmental analysis," Energy, Elsevier, vol. 100(C), pages 321-331.
    12. Lange, Mareike & Suarez, César Freddy, 2013. "EU biofuel policies in practise: A carbon map for the Llanos orientales in Colombia," Kiel Working Papers 1864, Kiel Institute for the World Economy (IfW Kiel).
    13. Mirzabaev, Alisher & Guta, Dawit & Goedecke, Jann & Gaur, Varun & Börner, Jan & Virchow, Detlef & Denich, Manfred & von Braun, Joachim, 2014. "Bioenergy, Food Security and Poverty Reduction: Mitigating tradeoffs and promoting synergies along the Water- Energy-Food Security Nexus," Working Papers 180421, University of Bonn, Center for Development Research (ZEF).
    14. Purkus, Alexandra & Gawel, Erik & Thrän, Daniela, 2012. "Bioenergy governance between market and government failures: A new institutional economics perspective," UFZ Discussion Papers 13/2012, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    15. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    16. Andreas Meyer-Aurich & Yulia Lochmann & Hilde Klauss & Annette Prochnow, 2016. "Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 8(7), pages 1-14, June.
    17. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.
    18. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    19. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    20. Van Schoubroeck, Sophie & Van Dael, Miet & Van Passel, Steven & Malina, Robert, 2018. "A review of sustainability indicators for biobased chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 115-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lange, Mareike, 2011. "The GHG balance of biofuels taking into account land use change," Energy Policy, Elsevier, vol. 39(5), pages 2373-2385, May.
    2. Papapostolou, Christiana & Kondili, Emilia & Kaldellis, John K., 2011. "Development and implementation of an optimisation model for biofuels supply chain," Energy, Elsevier, vol. 36(10), pages 6019-6026.
    3. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    4. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    5. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-17.
    6. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
    7. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    8. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    9. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    10. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    11. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    12. Mohd Alsaleh & Muhammad Mansur Abdulwakil & Abdul Samad Abdul-Rahim, 2021. "Land-Use Change Impacts from Sustainable Hydropower Production in EU28 Region: An Empirical Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    13. Zheng, Longyu & Li, Qing & Zhang, Jibin & Yu, Ziniu, 2012. "Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production," Renewable Energy, Elsevier, vol. 41(C), pages 75-79.
    14. Marvin Joseph F. Montefrio, 2016. "Partnership Regimes for the Production of Biofuels and Natural Rubber in Upland Palawan, Philippines," EEPSEA Research Report rr2016045, Economy and Environment Program for Southeast Asia (EEPSEA), revised Apr 2016.
    15. Rico, J.A.P. & Sauer, I.L., 2015. "A review of Brazilian biodiesel experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 513-529.
    16. Merola, Simona Silvia & Valentino, Gerardo & Tornatore, Cinzia & Marchitto, Luca, 2013. "In-cylinder spectroscopic measurements of knocking combustion in a SI engine fuelled with butanol–gasoline blend," Energy, Elsevier, vol. 62(C), pages 150-161.
    17. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    18. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    19. Saraly Andrade de Sá & Charles Palmer & Stefanie Engel, 2012. "Ethanol Production, Food and Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 1-21, January.
    20. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.

    More about this item

    Keywords

    Land Economics/Use; Resource /Energy Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae11:114406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.