IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p617-d73102.html
   My bibliography  Save this article

Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation

Author

Listed:
  • Andreas Meyer-Aurich

    (Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany)

  • Yulia Lochmann

    (Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany)

  • Hilde Klauss

    (Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany)

  • Annette Prochnow

    (Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany
    Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Hinter der Reinhardtstr. 8-18, 10115 Berlin, Germany)

Abstract

This paper analyses the comparative advantage of using silage maize or grass as feedstock for anaerobic digestion to biogas from a greenhouse gas (GHG) mitigation point of view, taking into account site-specific yield potentials, management options, and land-use change effects. GHG emissions due to the production of biogas were calculated using a life-cycle assessment approach for three different site conditions with specific yield potentials and adjusted management options. While for the use of silage maize, GHG emissions per energy unit were the same for different yield potentials, and the emissions varied substantially for different grassland systems. Without land-use change effects, silage maize-based biogas had lower GHG emissions per energy unit compared to grass-based biogas. Taking land-use change into account, results in a comparative advantage of biogas production from grass-based feedstock produced on arable land compared to silage maize-based feedstock. However, under current frame conditions, it is quite unrealistic that grass production systems would be established on arable land at larger scale.

Suggested Citation

  • Andreas Meyer-Aurich & Yulia Lochmann & Hilde Klauss & Annette Prochnow, 2016. "Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 8(7), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:617-:d:73102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Meyer-Aurich & Jørgen Olesen & Annette Prochnow & Reiner Brunsch, 2013. "Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(7), pages 921-932, October.
    2. Britz, Wolfgang & Delzeit, Ruth, 2013. "The impact of German biogas production on European and global agricultural markets, land use and the environment," Energy Policy, Elsevier, vol. 62(C), pages 1268-1275.
    3. Lange, Mareike, 2011. "The GHG Balance of Biofuels Taking into Account Land Use Change (Power Point)," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114406, European Association of Agricultural Economists.
    4. Meyer-Aurich, Andreas & Schattauer, Alexander & Hellebrand, Hans Jürgen & Klauss, Hilde & Plöchl, Matthias & Berg, Werner, 2012. "Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources," Renewable Energy, Elsevier, vol. 37(1), pages 277-284.
    5. Meyer-Aurich, Andreas, 2005. "Economic and environmental analysis of sustainable farming practices - a Bavarian case study," Agricultural Systems, Elsevier, vol. 86(2), pages 190-206, November.
    6. Lange, Mareike, 2011. "The GHG balance of biofuels taking into account land use change," Energy Policy, Elsevier, vol. 39(5), pages 2373-2385, May.
    7. Cherubini, Francesco, 2010. "GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns," Renewable Energy, Elsevier, vol. 35(7), pages 1565-1573.
    8. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubis, Bogdan & Jankowski, Krzysztof Józef & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2020. "Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland," Renewable Energy, Elsevier, vol. 154(C), pages 813-825.
    2. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    3. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    4. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    5. Marco Rebhann & Yusuf Nadi Karatay & Günther Filler & Annette Prochnow, 2016. "Profitability of Management Systems on German Fenlands," Sustainability, MDPI, vol. 8(11), pages 1-21, October.
    6. Andreas Kiesel & Moritz Wagner & Iris Lewandowski, 2016. "Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?," Sustainability, MDPI, vol. 9(1), pages 1-20, December.
    7. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    8. Alexandra Pehlken & Kalle Wulf & Kevin Grecksch & Thomas Klenke & Nina Tsydenova, 2020. "More Sustainable Bioenergy by Making Use of Regional Alternative Biomass?," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    9. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    2. Andreas Meyer-Aurich & Jørgen Olesen & Annette Prochnow & Reiner Brunsch, 2013. "Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(7), pages 921-932, October.
    3. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    4. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    5. Söder, Mareike, 2014. "EU biofuel policies in practice: A carbon map for the Brazilian Cerrado," Kiel Working Papers 1966, Kiel Institute for the World Economy (IfW Kiel).
    6. Lange, Mareike, 2013. "EU biofuel policies in practise: A carbon map for Kalimantan and Sumatra," Kiel Working Papers 1863, Kiel Institute for the World Economy (IfW Kiel).
    7. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.
    8. Lange, Mareike & Suarez, César Freddy, 2013. "EU biofuel policies in practise: A carbon map for the Llanos orientales in Colombia," Kiel Working Papers 1864, Kiel Institute for the World Economy (IfW Kiel).
    9. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    10. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    11. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations," Energy Policy, Elsevier, vol. 47(C), pages 384-397.
    12. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    13. Baumber, Alex, 2017. "Enhancing ecosystem services through targeted bioenergy support policies," Ecosystem Services, Elsevier, vol. 26(PA), pages 98-110.
    14. Boucher, Philip, 2012. "The role of controversy, regulation and engineering in UK biofuel development," Energy Policy, Elsevier, vol. 42(C), pages 148-154.
    15. Van Schoubroeck, Sophie & Van Dael, Miet & Van Passel, Steven & Malina, Robert, 2018. "A review of sustainability indicators for biobased chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 115-126.
    16. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Delzeit, Ruth & Lange, Mareike, 2011. "Biofuel policies and indirect land use change," Kiel Policy Brief 37, Kiel Institute for the World Economy (IfW Kiel).
    18. Mirzabaev, Alisher & Guta, Dawit & Goedecke, Jann & Gaur, Varun & Börner, Jan & Virchow, Detlef & Denich, Manfred & von Braun, Joachim, 2014. "Bioenergy, Food Security and Poverty Reduction: Mitigating tradeoffs and promoting synergies along the Water- Energy-Food Security Nexus," Working Papers 180421, University of Bonn, Center for Development Research (ZEF).
    19. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    20. Duarte, Alexandra & Sarache, William & Costa, Yasel, 2016. "Biofuel supply chain design from Coffee Cut Stem under environmental analysis," Energy, Elsevier, vol. 100(C), pages 321-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:617-:d:73102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.