IDEAS home Printed from https://ideas.repec.org/p/ags/aesc09/50938.html
   My bibliography  Save this paper

Estimating the Marginal Costs of Greenhouse Gas Emissions Abatement using Irish Farm-Level Data

Author

Listed:
  • Breen, James P.
  • Donellan, Trevor

Abstract

Agriculture in Ireland accounts for a higher proportion of greenhouse gas (GHG) emissions than in any other EU member state. Furthermore as part of the EU’s commitment to reduce emissions by 20 percent by 2020, Ireland is one of the few countries who will have to cuts its 2005 GHG emissions level by the full 20 percent. Given the magnitude of the cut in national emissions that is required and the size of agriculture’s contribution to Ireland’s total emissions, the agriculture sector has been identified by some parties as a sector that could make a significant contribution to achieving the national target. In order to evaluate the impact on Irish farmers of reducing GHG emissions it is necessary to first estimate the marginal cost of emissions abatement. This paper uses Irish farm-level data to construct a linear programming model which in turn is used to estimate the marginal abatement cost curve for GHG emissions on Irish farms and this is aggregated to estimate a marginal cost curve for the agriculture sector. The impact of an emissions tax in achieving targeted levels of GHG emissions will be measured under a baseline scenario of no policy change.

Suggested Citation

  • Breen, James P. & Donellan, Trevor, 2009. "Estimating the Marginal Costs of Greenhouse Gas Emissions Abatement using Irish Farm-Level Data," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 50938, Agricultural Economics Society.
  • Handle: RePEc:ags:aesc09:50938
    DOI: 10.22004/ag.econ.50938
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/50938/files/Breen_Donnellan32.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.50938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Cara & Martin Houzé & Pierre-Alain Jayet, 2005. "Methane and Nitrous Oxide Emissions from Agriculture in the EU: A Spatial Assessment of Sources and Abatement Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 551-583, December.
    2. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    3. Criqui, Patrick & Mima, Silvana & Viguier, Laurent, 1999. "Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings: an assessment using the POLES model," Energy Policy, Elsevier, vol. 27(10), pages 585-601, October.
    4. Manish Gupta, 2006. "Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector," Working Papers 2006.147, Fondazione Eni Enrico Mattei.
    5. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    6. Kwon, Oh Sang & Yun, Won-Cheol, 1999. "Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector," Energy Economics, Elsevier, vol. 21(6), pages 545-558, December.
    7. Rezek, Jon P. & Campbell, Randall C., 2007. "Cost estimates for multiple pollutants: A maximum entropy approach," Energy Economics, Elsevier, vol. 29(3), pages 503-519, May.
    8. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    2. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    3. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    4. Molinos-Senante, María & Hanley, Nick & Sala-Garrido, Ramón, 2015. "Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach," Applied Energy, Elsevier, vol. 144(C), pages 241-249.
    5. Lee, Chia-Yen & Zhou, Peng, 2015. "Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010," Energy Economics, Elsevier, vol. 51(C), pages 493-502.
    6. Kyohei Matsushita & Kota Asano, 2014. "Reducing CO 2 emissions of Japanese thermal power companies: a directional output distance function approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(1), pages 1-19, January.
    7. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    8. Badau, Flavius & Färe, Rolf & Gopinath, Munisamy, 2016. "Global resilience to climate change: Examining global economic and environmental performance resulting from a global carbon dioxide market," Resource and Energy Economics, Elsevier, vol. 45(C), pages 46-64.
    9. Vijay, Samudra & DeCarolis, Joseph F. & Srivastava, Ravi K., 2010. "A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers," Energy Policy, Elsevier, vol. 38(5), pages 2255-2261, May.
    10. Park, Hojeong & Lim, Jaekyu, 2009. "Valuation of marginal CO2 abatement options for electric power plants in Korea," Energy Policy, Elsevier, vol. 37(5), pages 1834-1841, May.
    11. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    12. Shirong Zhao & Guangshun Qiao, 2022. "The shadow prices of CO2, SO2 and NOx for U.S. coal power industry 2010–2017: a convex quantile regression method," Journal of Productivity Analysis, Springer, vol. 57(3), pages 243-253, June.
    13. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    14. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    15. Chen Shi & Yujiao Xian & Zhixin Wang & Ke Wang, 2023. "Marginal abatement cost curve of carbon emissions in China: a functional data analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-25, February.
    16. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    17. Lehmann, Paul, 2010. "Combining emissions trading and emissions taxes in a multi-objective world," UFZ Discussion Papers 4/2010, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    18. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    19. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    20. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.

    More about this item

    Keywords

    Agricultural and Food Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc09:50938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.