IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v31y2023i2p877-892.html
   My bibliography  Save this article

Developing a new water–energy–food‐greenhouse gases nexus tool for sustainable agricultural landscape management

Author

Listed:
  • Hourieh Masaeli
  • Alireza Gohari
  • Marzieh Hasanzadeh Saray
  • Ali Torabi Haghighi

Abstract

A new comprehensive water, energy, food, greenhouse gas (WEFG) nexus index was developed to capture the interrelationships between them. A total of 11 indicators were applied to consider the interplay of resources consumption, productivity, economic issues, and carbon emission as one of the most critical issues regarding sustainable agricultural development. The proposed WEFG index was evaluated for crop pattern optimization. The results showed that the WEFG ranged from 0.162 to 0.658, which were calculated respectively for almonds and rice due to their energy consumption and carbon emission levels. The optimal cultivation pattern based on WEFG leads to 11% and 15.8% reductions in water and energy consumption, even with a 2.3% increase in cultivation area. The estimated profit for optimal pattern based on WEFG decreased by 13.67% due to lower cultivation levels of high‐yield crops such as onion and potatoes. However, the optimal cultivation pattern based on the WEFG index has decreased greenhouse gas emissions by 2%, leading to sustainable agricultural management. Therefore, the presented WEFG nexus index can be a practical metric for sustainable planning and management in the agriculture sector.

Suggested Citation

  • Hourieh Masaeli & Alireza Gohari & Marzieh Hasanzadeh Saray & Ali Torabi Haghighi, 2023. "Developing a new water–energy–food‐greenhouse gases nexus tool for sustainable agricultural landscape management," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 877-892, April.
  • Handle: RePEc:wly:sustdv:v:31:y:2023:i:2:p:877-892
    DOI: 10.1002/sd.2427
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2427
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jasmina Behan & Kieran McQuinn, 2004. "The effects of potential reform of the CAP on greenhouse gas emissions from Irish agriculture: an extensification scenario," Sustainable Development, John Wiley & Sons, Ltd., vol. 12(1), pages 45-55.
    2. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    3. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    4. Kaur, Baljinder & Sidhu, R.S. & Vatta, Kamal, 2010. "Optimal Crop Plans for Sustainable Water Use in Punjab," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(2), July.
    5. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    6. Dimitrios P. Platis & Christos D. Anagnostopoulos & Aggeliki D. Tsaboula & Georgios C. Menexes & Kiriaki L. Kalburtji & Andreas P. Mamolos, 2019. "Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    7. Kramer, Klaas Jan & Moll, Henri C. & Nonhebel, Sanderine & Wilting, Harry C., 1999. "Greenhouse gas emissions related to Dutch food consumption," Energy Policy, Elsevier, vol. 27(4), pages 203-216, April.
    8. Adewale, Cornelius & Higgins, Stewart & Granatstein, David & Stöckle, Claudio O. & Carlson, Bryan R. & Zaher, Usama E. & Carpenter-Boggs, Lynne, 2016. "Identifying hotspots in the carbon footprint of a small scale organic vegetable farm," Agricultural Systems, Elsevier, vol. 149(C), pages 112-121.
    9. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    10. Christian Webersik & Clarice Wilson, 2009. "Achieving environmental sustainability and growth in Africa: the role of science, technology and innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 17(6), pages 400-413.
    11. Tzilivakis, J. & Warner, D.J. & May, M. & Lewis, K.A. & Jaggard, K., 2005. "An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK," Agricultural Systems, Elsevier, vol. 85(2), pages 101-119, August.
    12. Andrew Bell & Nathanial Matthews & Wei Zhang, 2016. "Opportunities for improved promotion of ecosystem services in agriculture under the Water-Energy-Food Nexus," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 183-191, March.
    13. Roberto Volpe & Simona Messineo & Maurizio Volpe & Antonio Messineo, 2015. "Carbon Footprint of Tree Nuts Based Consumer Products," Sustainability, MDPI, vol. 7(11), pages 1-18, November.
    14. Syed Abdul Rehman Khan & Danish Iqbal Godil & Muhammad Umer Quddoos & Zhang Yu & Muhammad Hanif Akhtar & Zijing Liang, 2021. "Investigating the nexus between energy, economic growth, and environmental quality: A road map for the sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 835-846, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Meiqing & Chen, Yaning & Duan, Weili & Fang, Gonghuan & li, Zhi & Jiao, Li & Sun, Fan & Li, Yupeng & Hou, Yifeng, 2022. "Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    3. Persefoni Maletsika & Chris Cavalaris & Vasileios Giouvanis & George D. Nanos, 2022. "Effects of Alternative Fertilization and Irrigation Practices on the Energy Use and Carbon Footprint of Canning Peach Orchards," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    4. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    5. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    6. Feliciano, Diana & Nayak, Dali Rani & Vetter, Sylvia Helga & Hillier, Jon, 2017. "CCAFS-MOT - A tool for farmers, extension services and policy-advisors to identify mitigation options for agriculture," Agricultural Systems, Elsevier, vol. 154(C), pages 100-111.
    7. Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
    8. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    9. Sharp, Anne & Wheeler, Meagan, 2013. "Reducing householders’ grocery carbon emissions: Carbon literacy and carbon label preferences," Australasian marketing journal, Elsevier, vol. 21(4), pages 240-249.
    10. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    11. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    12. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    14. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
    15. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    16. Liang Li & Ying Xiang & Xinyue Fan & Qinxiang Wang & Yang Wei, 2023. "Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    17. Kristin B. Raub & Kristine F. Stepenuck & Bindu Panikkar & Jennie C. Stephens, 2021. "An Analysis of Resilience Planning at the Nexus of Food, Energy, Water, and Transportation in Coastal US Cities," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    18. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    19. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    20. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:31:y:2023:i:2:p:877-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.