Advanced Search
MyIDEAS: Login

On The Asymptotics Of Adf Tests For Unit Roots

Contents:

Author Info

  • Yoosoon Chang
  • Joon Park

Abstract

In this paper, we derive the asymptotic distributions of Augmented-Dickey-Fuller (ADF) tests under very mild conditions. The tests were originally proposed and investigated by Said and Dickey (1984) for testing unit roots in finite-order ARMA models with i.i.d. innovations, and are based on a finite AR process of order increasing with the sample size. Our conditions are significantly weaker than theirs. In particular, we allow for general linear processes with martingale difference innovations, possibly having conditional heteroskedasticities. The linear processes driven by ARCH type innovations are thus permitted. The range for the permissible increasing rates for the AR approximation order is also much wider. For the usual t-type test, we only require that it increase at order o(n1/2) while they assume that it is of order o(nκ) for some κ satisfying 0 < κ ≤ 1/3.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-120015385
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 21 (2002)
Issue (Month): 4 ()
Pages: 431-447

as in new window
Handle: RePEc:taf:emetrv:v:21:y:2002:i:4:p:431-447

Contact details of provider:
Web page: http://www.tandfonline.com/LECR20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/LECR20

Related research

Keywords: ADF tests; Unit roots; Asymptotics; Linear process; Autoregressive approximation;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ng, S. & Perron, P., 1994. "Unit Root Tests ARMA Models with Data Dependent Methods for the Selection of the Truncation Lag," Cahiers de recherche 9423, Universite de Montreal, Departement de sciences economiques.
  2. Peter C.B. Phillips & Pierre Perron, 1986. "Testing for a Unit Root in Time Series Regression," Cowles Foundation Discussion Papers 795R, Cowles Foundation for Research in Economics, Yale University, revised Sep 1987.
  3. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  4. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
  5. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:21:y:2002:i:4:p:431-447. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.