IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i11d10.1007_s11269-022-03245-7.html
   My bibliography  Save this article

Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis

Author

Listed:
  • Wuliyasu Bai

    (China University of Geosciences)

  • Liang Yan

    (China University of Geosciences)

  • Jingbo Liang

    (Xinyang Normal University)

  • Long Zhang

    (Xinyang Normal University)

Abstract

With the extensive growth of economy, the water system of the globe is under unprecedented pressure. So, the relationship between economic growth and water sustainability has been a common concern for the academia. The purpose of this paper is to use the bibliometric method to sort out the research progresses on economic growth and water sustainability during the past 30 years. More importantly, it tries to recognize the research hotspots and future trends in this field, to provide valuable directions for later research. A systemic review and bibliometric analysis are conducted by retrieving 1287 papers on water sustainability and economic growth. The results indicate that the number of articles related to the field of economic growth and water sustainability has increased steadily. The 1287 articles are published in 581 different journals, where the top 20 publishing journals have published 31.31% of them, and Sustainability and Journal of Cleaner Production have published the most retrieved articles. By introducing the Mapping Knowledge Domain with the combination of the software of COOC and VOSviewer, five clusters of research hotspots are summarized: economic growth and water consumption; water-energy-food-economy nexus and circular economy; climate change, water scarcity and water quality; water resources management and water footprint; wastewater management and valorization.

Suggested Citation

  • Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03245-7
    DOI: 10.1007/s11269-022-03245-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03245-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03245-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soojun Kim & Naresh Devineni & Upmanu Lall & Hung Soo Kim, 2018. "Sustainable Development of Water Resources: Spatio-Temporal Analysis of Water Stress in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    2. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    3. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(Supplemen), pages 72-87, January.
    4. Saleh, Layla & Mezher, Toufic, 2021. "Techno-economic analysis of sustainability and externality costs of water desalination production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Xianying Li & Feng Xu & Nan Xiang & Yating Wang & Yingkui Zhang, 2019. "Dynamic Optimized Cleaner Production Strategies to Improve Water Environment and Economic Development in Leather Industrial Parks: A Case Study in Xinji, China," Sustainability, MDPI, vol. 11(23), pages 1-18, December.
    6. Na Li & Yanan Wei & Lachun Wang & Chunfen Zeng & Xiaoxue Ma & Hao Wu, 2016. "Impact of industrialization on water protection in the Huai River Basin within Shandong Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1193-1207, March.
    7. Yang Kong & Weijun He & Liang Yuan & Juqin Shen & Min An & Dagmawi Mulugeta Degefu & Xin Gao & Zhaofang Zhang & Fuhua Sun & Zhongchi Wan, 2019. "Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017," IJERPH, MDPI, vol. 16(23), pages 1-20, December.
    8. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    9. Domenica Mirauda & Marco Ostoich, 2020. "MIMR Criterion Application: Entropy Approach to Select the Optimal Quality Parameter Set Responsible for River Pollution," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    10. Cremades, Roger & Sanchez-Plaza, Anabel & Hewitt, Richard J & Mitter, Hermine & Baggio, Jacopo A. & Olazabal, Marta & Broekman, Annelies & Kropf, Bernadette & Tudose, Nicu Constantin, 2021. "Guiding cities under increased droughts: The limits to sustainable urban futures," Ecological Economics, Elsevier, vol. 189(C).
    11. Torras, Mariano & Boyce, James K., 1998. "Income, inequality, and pollution: a reassessment of the environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 25(2), pages 147-160, May.
    12. Maamar Sebri, 2016. "Testing the environmental Kuznets curve hypothesis for water footprint indicator: a cross-sectional study," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(11), pages 1933-1956, November.
    13. Ozturk, Ilhan, 2015. "Sustainability in the food-energy-water nexus: Evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries," Energy, Elsevier, vol. 93(P1), pages 999-1010.
    14. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    15. Liu, Jing & Hertel, Thomas W. & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz C. & Grogan, Danielle S. & Frolking, Steve, 2017. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Security and Land Use," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258118, Agricultural and Applied Economics Association.
    16. Jian-gang Shi & Wei Miao & Hongyun Si, 2019. "Visualization and Analysis of Mapping Knowledge Domain of Urban Vitality Research," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    17. Craig W. Hutton & Robert J. Nicholls & Attila N. Lázár & Alex Chapman & Marije Schaafsma & Mashfiqus Salehin, 2018. "Potential Trade-Offs between the Sustainable Development Goals in Coastal Bangladesh," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    18. Radu Petrariu & Marius Constantin & Mihai Dinu & Simona Roxana Pătărlăgeanu & Mădălina Elena Deaconu, 2021. "Water, Energy, Food, Waste Nexus: Between Synergy and Trade-Offs in Romania Based on Entrepreneurship and Economic Performance," Energies, MDPI, vol. 14(16), pages 1-23, August.
    19. Na Li & Yanan Wei & Lachun Wang & Chunfen Zeng & Xiaoxue Ma & Hao Wu, 2016. "Impact of industrialization on water protection in the Huai River Basin within Shandong Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1193-1207, March.
    20. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    21. S. H. A. Koop & C. J. Leeuwen, 2017. "The challenges of water, waste and climate change in cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 385-418, April.
    22. Caroline Sullivan & Jeremy Meigh, 2007. "Integration of the biophysical and social sciences using an indicator approach: Addressing water problems at different scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 111-128, January.
    23. L. Haak & K. Pagilla, 2020. "The Water-Economy Nexus: a Composite Index Approach to Evaluate Urban Water Vulnerability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 409-423, January.
    24. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
    25. Pier Paolo Miglietta & Domenico Morrone, 2018. "Managing Water Sustainability: Virtual Water Flows and Economic Water Productivity Assessment of the Wine Trade between Italy and the Balkans," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    2. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    3. Unknown, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    4. repec:idb:brikps:64718 is not listed on IDEAS
    5. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    6. L. Toma & A. P. Barnes & L.-A. Sutherland & S. Thomson & F. Burnett & K. Mathews, 2018. "Impact of information transfer on farmers’ uptake of innovative crop technologies: a structural equation model applied to survey data," The Journal of Technology Transfer, Springer, vol. 43(4), pages 864-881, August.
    7. Fang He & Linlin Shi & Jingcheng Tian & Lijuan Mei, 2021. "Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-7.
    8. Muyanga, Milu & Jayne, T.S., 2014. "Effects of rising rural population density on smallholder agriculture in Kenya," Food Policy, Elsevier, vol. 48(C), pages 98-113.
    9. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    10. Mariana Regina Durigan & Maurício Roberto Cherubin & Plínio Barbosa De Camargo & Joice Nunes Ferreira & Erika Berenguer & Toby Alan Gardner & Jos Barlow & Carlos Tadeu dos Santos Dias & Diana Signor &, 2017. "Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    11. Hans-Peter Weikard, 2016. "Phosphorus recycling and food security in the long run: a conceptual modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(2), pages 405-414, April.
    12. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs in Africa: An Assessment of Recent Evidence," Food Security International Development Working Papers 245892, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    13. Giltrap, Donna L. & Kirschbaum, Miko U.F. & Liáng, Lìyǐn L., 2021. "The potential effectiveness of four different options to reduce environmental impacts of grazed pastures. A model-based assessment," Agricultural Systems, Elsevier, vol. 186(C).
    14. Niedermayr, A. & Schaller, L. & Kieninger, P. & Kantelhardt, J., 2018. "Integrating soil and climate-related aspects into the valuation of willingness to pay for public goods provided by agriculture in an intensive agricultural production region: The case of the Marchfeld," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276963, International Association of Agricultural Economists.
    15. Bleuler, Mira & Farina, Roberta & Francaviglia, Rosa & di Bene, Claudia & Napoli, Rosario & Marchetti, Alessandro, 2017. "Modelling the impacts of different carbon sources on the soil organic carbon stock and CO2 emissions in the Foggia province (Southern Italy)," Agricultural Systems, Elsevier, vol. 157(C), pages 258-268.
    16. Jayne, T.S. & Chamberlin, Jordan & Headey, Derek D., 2014. "Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis," Food Policy, Elsevier, vol. 48(C), pages 1-17.
    17. Heywood, Peter Frank & Turpin, Simon, 2013. "Variations in Soil Carbon Stocks with Texture and Previous Landuse in North-western NSW, Australia," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 2(2).
    18. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    19. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    20. Jürges, Nataly, 2016. "Wahrnehmungen und Funktionen in der Transformation zur Bioökonomie: Eine Akteursanalyse im Politikfeld "Boden"," UFZ Discussion Papers 6/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    21. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03245-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.