IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v137y2014icp52-58.html
   My bibliography  Save this article

Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya

Author

Listed:
  • Okeyo, A.I.
  • Mucheru-Muna, M.
  • Mugwe, J.
  • Ngetich, K.F.
  • Mugendi, D.N.
  • Diels, J.
  • Shisanya, C.A.

Abstract

Mitigating nutrient loss is a prerequisite of sustainable agriculture in the tropics. We evaluated three soil and water conservation technologies (mulching, minimum tillage and tied ridging) for two cropping seasons (long rains 2011, short rains 2011) at two sites in the central highlands of Kenya. The objectives were: to determine effects of the technologies on runoff, sediment yield and nutrient loads in sediment, and to assess influence of the technologies on maize yields. Experimental design was a randomized complete block with 3 treatments replicated thrice. At the beginning of experiment, soil was sampled at 0–15cm depth and analyzed for pH, N, P, K, C, Ca and Mg. Mulch was applied at a rate of 5tha−1. Runoff was sampled, sediments extracted by drying in oven at 105°C, and analyzed for NPK and C loads. Data were subjected to analysis of variance using SAS 9.1.3 and means separated using Fishers’ LSD at 5% level of significance. Results showed reduced nutrient losses with the technologies. In Meru South, sediment yield was reduced by 41 and 7% during long rains 2011 (p=0.03), and by 71 and 68% during short rains 2011 (p=0.01) under mulching and minimum tillage, respectively. Runoff and maize yields were positively influenced by mulching. In Mbeere South, sediment yield was lower under soil and water conservation technologies. Runoff was reduced by 52 and 49% during long rains 2011 and by 51 and 30% during short rains 2011 under tied ridging and mulching respectively, compared with control. Total crop failure occurred during long rains 2011 due to erratic rains. During short rains 2011 tied ridging and mulching increased maize yield by 94 and 75%, respectively, compared with control. This study highlights the importance of analyzing soil and water conservation technologies within rain-fed farming systems perspective in response to declining food production and supports a focus on tied ridging and mulching.

Suggested Citation

  • Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.
  • Handle: RePEc:eee:agiwat:v:137:y:2014:i:c:p:52-58
    DOI: 10.1016/j.agwat.2014.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414000390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Y. & Tao, Y. & Wan, K.Y. & Zhang, G.S. & Liu, D.B. & Xiong, G.Y. & Chen, F., 2012. "Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China," Agricultural Water Management, Elsevier, vol. 110(C), pages 34-40.
    2. Nuti, R.C. & Lamb, M.C. & Sorensen, R.B. & Truman, C.C., 2009. "Agronomic and economic response to furrow diking tillage in irrigated and non-irrigated cotton (Gossypium hirsutum L.)," Agricultural Water Management, Elsevier, vol. 96(7), pages 1078-1084, July.
    3. Bhatt, Yogesh & Bossio, Deborah & Enfors, E. & Gordon, L. & Kongo, V. & Kosgei, J. R. & Makurira, H. & Masuki, K. & Mul, M. & Tumbo, S. D., 2006. "Smallholder system innovations in integrated watershed management (SSI): strategies of water for food and environmental security in drought-prone tropical and subtropical agro-ecosystems," IWMI Working Papers H039095, International Water Management Institute.
    4. Araya, A. & Stroosnijder, L., 2010. "Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 97(6), pages 841-847, June.
    5. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(Supplemen), pages 72-87, January.
    6. Enfors, Elin & Barron, Jennie & Makurira, Hodson & Rockström, Johan & Tumbo, Siza, 2011. "Yield and soil system changes from conservation tillage in dryland farming: A case study from North Eastern Tanzania," Agricultural Water Management, Elsevier, vol. 98(11), pages 1687-1695, September.
    7. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    8. Bossio, Deborah & Geheb, Kim & Critchley, William, 2010. "Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods," Agricultural Water Management, Elsevier, vol. 97(4), pages 536-542, April.
    9. Miriti, J.M. & Kironchi, G. & Esilaba, A.O. & Heng, L.K. & Gachene, C.K.K. & Mwangi, D.M., 2012. "Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya," Agricultural Water Management, Elsevier, vol. 115(C), pages 148-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harry Spaling & Kendra Kooy, 2019. "Farming God’s Way: agronomy and faith contested," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(3), pages 411-426, September.
    2. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    3. Kiboi, M.N. & Ngetich, K.F. & Fliessbach, A. & Muriuki, A. & Mugendi, D.N., 2019. "Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya," Agricultural Water Management, Elsevier, vol. 217(C), pages 316-331.
    4. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    5. Hope Mwanake & Bano Mehdi-Schulz & Karsten Schulz & Nzula Kitaka & Luke O. Olang & Jakob Lederer & Mathew Herrnegger, 2023. "Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion," Agriculture, MDPI, vol. 13(7), pages 1-32, July.
    6. Miriam W Githongo & Collins M. Musafiri & Joseph M. Macharia & Milka N. Kiboi & Andreas Fliessbach & Anne Muriuki & Felix K. Ngetich, 2022. "Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    7. Dai, Cuiting & Liu, Yaojun & Wang, Tianwei & Li, Zhaoxia & Zhou, Yiwen, 2018. "Exploring optimal measures to reduce soil erosion and nutrient losses in southern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 41-48.
    8. Ndung’u, M. & Mugwe, J.N. & Mucheru-Muna, M.W. & Ngetich, F.K. & Mairura, F.S. & Mugendi, D.N., 2023. "Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya," Agricultural Water Management, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    2. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    3. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    4. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    5. Unknown, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    6. repec:idb:brikps:64718 is not listed on IDEAS
    7. L. Toma & A. P. Barnes & L.-A. Sutherland & S. Thomson & F. Burnett & K. Mathews, 2018. "Impact of information transfer on farmers’ uptake of innovative crop technologies: a structural equation model applied to survey data," The Journal of Technology Transfer, Springer, vol. 43(4), pages 864-881, August.
    8. Fang He & Linlin Shi & Jingcheng Tian & Lijuan Mei, 2021. "Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-7.
    9. Muyanga, Milu & Jayne, T.S., 2014. "Effects of rising rural population density on smallholder agriculture in Kenya," Food Policy, Elsevier, vol. 48(C), pages 98-113.
    10. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    11. Mariana Regina Durigan & Maurício Roberto Cherubin & Plínio Barbosa De Camargo & Joice Nunes Ferreira & Erika Berenguer & Toby Alan Gardner & Jos Barlow & Carlos Tadeu dos Santos Dias & Diana Signor &, 2017. "Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    12. Hans-Peter Weikard, 2016. "Phosphorus recycling and food security in the long run: a conceptual modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(2), pages 405-414, April.
    13. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs in Africa: An Assessment of Recent Evidence," Food Security International Development Working Papers 245892, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    14. Giltrap, Donna L. & Kirschbaum, Miko U.F. & Liáng, Lìyǐn L., 2021. "The potential effectiveness of four different options to reduce environmental impacts of grazed pastures. A model-based assessment," Agricultural Systems, Elsevier, vol. 186(C).
    15. Niedermayr, A. & Schaller, L. & Kieninger, P. & Kantelhardt, J., 2018. "Integrating soil and climate-related aspects into the valuation of willingness to pay for public goods provided by agriculture in an intensive agricultural production region: The case of the Marchfeld," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276963, International Association of Agricultural Economists.
    16. Bleuler, Mira & Farina, Roberta & Francaviglia, Rosa & di Bene, Claudia & Napoli, Rosario & Marchetti, Alessandro, 2017. "Modelling the impacts of different carbon sources on the soil organic carbon stock and CO2 emissions in the Foggia province (Southern Italy)," Agricultural Systems, Elsevier, vol. 157(C), pages 258-268.
    17. Jayne, T.S. & Chamberlin, Jordan & Headey, Derek D., 2014. "Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis," Food Policy, Elsevier, vol. 48(C), pages 1-17.
    18. Heywood, Peter Frank & Turpin, Simon, 2013. "Variations in Soil Carbon Stocks with Texture and Previous Landuse in North-western NSW, Australia," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 2(2).
    19. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    20. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    21. Jürges, Nataly, 2016. "Wahrnehmungen und Funktionen in der Transformation zur Bioökonomie: Eine Akteursanalyse im Politikfeld "Boden"," UFZ Discussion Papers 6/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:137:y:2014:i:c:p:52-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.