IDEAS home Printed from https://ideas.repec.org/a/spr/ssefpa/v10y2018i2d10.1007_s12571-018-0777-4.html
   My bibliography  Save this article

Does minimum tillage improve the livelihood outcomes of smallholder farmers in Zambia?

Author

Listed:
  • Hambulo Ngoma

    (Michigan State University
    Indaba Agricultural Policy Research Institute (IAPRI)
    Norwegian University of Life Science)

Abstract

Minimum tillage (MT) is a farming practice that reduces soil disturbance by limiting tillage only to planting stations. MT is an integral part of Climate Smart Agriculture aimed at raising agricultural productivity, improving farmer livelihoods and building climate resilient farming systems in sub-Saharan Africa. However, there are questions on its suitability for smallholder farmers in the region. This paper assesses the impacts of MT on crop yield and crop income using an endogenous switching regression (ESR) model applied to cross sectional data from 751 fields, of which 17% were under MT in Zambia. The ESR framework accounts for heterogeneity in the decision to adopt MT or not and consistently predicts the outcomes of adopters and non-adopters had they not adopted and adopted, respectively. The results suggest that adopting MT was associated with an average yield gain for maize, groundnut, sunflower, soybean and cotton of 334 kg/ha but it had no significant effects on crop income (from sales and for subsistence) of households in the short-term. These results are partly explained by partial adoption: even among adopters, only 8% of cultivated land was under MT. In these circumstances, although MT confers some yield benefits, the gains may be insufficient to offset the costs of implementation and translate into higher incomes and better livelihood outcomes in the short-term. Additional costs associated with MT include implements, herbicides, and labor for weed control and for land preparation. Assumptions of labor saving from preparing land in the dry season and cost savings by reduced fuel use and weed pressure are aspirational because of the prevalent customary land tenure and communal grazing systems, and because mechanization and the use of herbicides to control weeds remain low among smallholders. Nevertheless, if the longer-term productivity gains from MT are large enough, these may offset the higher implementation costs of MT due to economies of scale and may eventually result in improved incomes and food security. These findings may help to explain the perceived low uptake rates for MT in Zambia and call for lowering implementation costs through extension specific to MT and by adapting MT to local contexts.

Suggested Citation

  • Hambulo Ngoma, 2018. "Does minimum tillage improve the livelihood outcomes of smallholder farmers in Zambia?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 381-396, April.
  • Handle: RePEc:spr:ssefpa:v:10:y:2018:i:2:d:10.1007_s12571-018-0777-4
    DOI: 10.1007/s12571-018-0777-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12571-018-0777-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12571-018-0777-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grabowski, Philip P. & Haggblade, Steven & Kabwe, Stephen & Tembo, Gelson, 2014. "Minimum tillage adoption among commercial smallholder cotton farmers in Zambia, 2002 to 2011," Agricultural Systems, Elsevier, vol. 131(C), pages 34-44.
    2. Haggblade, Steven & Tembo, Gelson, 2003. "Development, Diffusion and Impact of Conservation Farming in Zambia," Food Security Collaborative Working Papers 54464, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    3. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    4. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    5. Arslan, Aslihan & McCarthy, Nancy & Lipper, Leslie & Asfaw, Solomon & Cattaneo, Andrea, 2013. "Adoption and Intensity of Adoption of Conservation Farming Practices in Zambia," Food Security Collaborative Working Papers 147461, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    6. Ben Jann, 2008. "The Blinder–Oaxaca decomposition for linear regression models," Stata Journal, StataCorp LP, vol. 8(4), pages 453-479, December.
    7. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    8. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    9. Awudu Abdulai & Wallace Huffman, 2014. "The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application," Land Economics, University of Wisconsin Press, vol. 90(1), pages 26-43.
    10. Michael Lokshin & Zurab Sajaia, 2004. "Maximum likelihood estimation of endogenous switching regression models," Stata Journal, StataCorp LP, vol. 4(3), pages 282-289, September.
    11. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.
    12. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    13. Moti Jaleta & Menale Kassie & Kindie Tesfaye & Tilaye Teklewold & Pradyot Ranjan Jena & Paswel Marenya & Olaf Erenstein, 2016. "Resource saving and productivity enhancing impacts of crop management innovation packages in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 47(5), pages 513-522, September.
    14. Ngoma, Hambulo & Mulenga, Brian P. & Jayne, Thomas S., 2016. "Minimum tillage uptake and uptake intensity by smallholder farmers in Zambia," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 11(4), pages 1-14, December.
    15. Yonas Alem & Håkan Eggert & Remidius Ruhinduka, 2015. "Improving Welfare Through Climate-Friendly Agriculture: The Case of the System of Rice Intensification," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 243-263, October.
    16. de Janvry, Alain & Fafchamps, Marcel & Sadoulet, Elisabeth, 1991. "Peasant Household Behaviour with Missing Markets: Some Paradoxes Explained," Economic Journal, Royal Economic Society, vol. 101(409), pages 1400-1417, November.
    17. Kassie, Menale & Shiferaw, Bekele & Muricho, Geoffrey, 2011. "Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda," World Development, Elsevier, vol. 39(10), pages 1784-1795.
    18. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    19. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    20. Tamer El-Shater & Yigezu A. Yigezu & Amin Mugera & Colin Piggin & Atef Haddad & Yaseen Khalil & Stephen Loss & A. Aw-Hassan, 2016. "Does Zero Tillage Improve the Livelihoods of Smallholder Cropping Farmers?," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 154-172, February.
    21. de Janvry, Alain & Fafchamps, M. & Sadoulet, Elisabeth, 1991. "Peasant Household Behavior with Missing Markets: Some Paradoxes Explain," CUDARE Working Papers 198579, University of California, Berkeley, Department of Agricultural and Resource Economics.
    22. Aslihan Arslan & Nancy McCarthy & Leslie Lipper & Solomon Asfaw & Andrea Cattaneo & Misael Kokwe, 2015. "Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 753-780, September.
    23. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2015. "Reply to 'No-till agriculture and climate change mitigation'," Nature Climate Change, Nature, vol. 5(6), pages 489-489, June.
    24. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    25. Ainembabazi, John Herbert & Angelsen, Arild, 2014. "Do commercial forest plantations reduce pressure on natural forests? Evidence from forest policy reforms in Uganda," Forest Policy and Economics, Elsevier, vol. 40(C), pages 48-56.
    26. Klaus J. Droppelmann & Sieglinde S. Snapp & Stephen R. Waddington, 2017. "Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 133-150, February.
    27. Ngoma, Hambulo & Mason, Nicole M. & Sitko, Nicholas, 2015. "Does Minimum Tillage with Planting Basins or Ripping Raise Maize Yields? Meso-panel Data Evidence from Zambia," Food Security Collaborative Working Papers 198701, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    28. Alem, Yonas & Eggert, Håkan & Ruhinduka, Remidius, 2015. "Improving Welfare through Climate-friendly Agriculture: The Case of the System of Rice Intensification," Working Papers in Economics 630, University of Gothenburg, Department of Economics.
    29. Tom S. Jayne & Nicholas J. Sitko & Nicole M. Mason & David Skole, 2018. "Input Subsidy Programs and Climate Smart Agriculture: Current Realities and Future Potential," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 251-273, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoma, Hambulo & Pelletier, Johanne & Mulenga, Brian P. & Subakanya, Mitelo, 2021. "Climate-smart agriculture, cropland expansion and deforestation in Zambia: Linkages, processes and drivers," Land Use Policy, Elsevier, vol. 107(C).
    2. Maina, Kevin W. & Ritho, Cecilia N. & Lukuyu, Ben A. & Rao, Elizaphan James O., 2022. "Opportunity cost of adopting improved planted forage: Evidence from the adoption of Brachiaria grass among smallholder dairy farmers in Kenya," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(1), March.
    3. Richardson, Robert B. & Olabisi, Laura Schmitt & Waldman, Kurt B. & Sakana, Naomi & Brugnone, Nathan G., 2021. "Modeling interventions to reduce deforestation in Zambia," Agricultural Systems, Elsevier, vol. 194(C).
    4. Wanjira, John K. & Mburu, John I. & Nzuve, Felister M. & Makokha, Stella & Emongor, Rosemary A. & Taracha, Catheline, 2022. "Impact of climate-smart maize varieties on household income among smallholder farmers in Kenya: The case of Embu County," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(3), September.
    5. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    6. Kirui, Oliver & Tambo, Justice, 2021. "Yield Effects of Conservation Agriculture Under Fall Armyworm Stress: The Case of Zambia," 2021 Conference, August 17-31, 2021, Virtual 315882, International Association of Agricultural Economists.
    7. Marenya, Paswel P. & Gebremariam, Gebrelibanos & Jaleta, Moti & Rahut, Dil B., 2020. "Sustainable intensification among smallholder maize farmers in Ethiopia: Adoption and impacts under rainfall and unobserved heterogeneity," Food Policy, Elsevier, vol. 95(C).
    8. Eleni Yitbarek & Wondimagegn Tesfaye, 2022. "Climate-Smart Agriculture, Non-Farm Employment and Welfare: Exploring Impacts and Options for Scaling Up," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    9. Long Yang & Haiyang Lu & Sangui Wang & Meng Li, 2021. "Mobile Internet Use and Multidimensional Poverty: Evidence from A Household Survey in Rural China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(3), pages 1065-1086, December.
    10. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    2. Federico Antonioli & Simone Severini & Mauro Vigani, 2023. "Visa for competitiveness: foreign workforce and Italian dairy farms’ performance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(1), pages 115-150.
    3. Nsabimana, Aimable, 2021. "Is change worth it? The effects of adopting modern agricultural inputs on household welfare in Rwanda," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 16(3), September.
    4. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.
    5. Song, Chunxiao & Liu, Ruifeng & Oxley, Oxley & Ma, Hengyun, 2018. "The adoption and impact of engineering-type measures to address climate change: evidence from the major grain-producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    6. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).
    7. Emiliano Magrini & Mauro Vigani, 2016. "Technology adoption and the multiple dimensions of food security: the case of maize in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(4), pages 707-726, August.
    8. Tufa, Adane Hirpa & Alene, Arega D. & Manda, Julius & Akinwale, M.G. & Chikoye, David & Feleke, Shiferaw & Wossen, Tesfamicheal & Manyong, Victor, 2019. "The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi," World Development, Elsevier, vol. 124(C), pages 1-1.
    9. Bairagi, Subir & Mishra, Ashok K. & Durand-Morat, Alvaro, 2020. "Climate risk management strategies and food security: Evidence from Cambodian rice farmers," Food Policy, Elsevier, vol. 95(C).
    10. Makaiko G. Khonje & Julius Manda & Petros Mkandawire & Adane Hirpa Tufa & Arega D. Alene, 2018. "Adoption and welfare impacts of multiple agricultural technologies: evidence from eastern Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 599-609, September.
    11. Jourdain C. Lokossou & Hippolyte D. Affognon & Alphonse Singbo & Michel B. Vabi & Ayoni Ogunbayo & Paul Tanzubil & Alcade C. Segnon & Geoffrey Muricho & Haile Desmae & Hakeem Ajeigbe, 2022. "Welfare impacts of improved groundnut varieties adoption and food security implications in the semi-arid areas of West Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 709-728, June.
    12. Ngoma, Hambulo & Angelsen, Arild, 2018. "Can conservation agriculture save tropical forests? The case of minimum tillage in Zambia," Forest Policy and Economics, Elsevier, vol. 97(C), pages 153-162.
    13. Verkaart, Simone & Munyua, Bernard G. & Mausch, Kai & Michler, Jeffrey D., 2017. "Welfare impacts of improved chickpea adoption: A pathway for rural development in Ethiopia?," Food Policy, Elsevier, vol. 66(C), pages 50-61.
    14. Wanjira, John K. & Mburu, John I. & Nzuve, Felister M. & Makokha, Stella & Emongor, Rosemary A. & Taracha, Catheline, 2022. "Impact of climate-smart maize varieties on household income among smallholder farmers in Kenya: The case of Embu County," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(3), September.
    15. Benali, Marwan & Brümmer, Bernhard & Afari-Sefa, Victor, 2017. "Small producer participation in export vegetable supply chains and poverty: evidence from different export schemes in Tanzania," GlobalFood Discussion Papers 262583, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
    16. Armel Nonvide, Gbêtondji Melaine, 2023. "Impact of information and communication technologies on agricultural households’ welfare in Benin," Telecommunications Policy, Elsevier, vol. 47(6).
    17. Enid M. Katungi & Catherine Larochelle & Josephat R. Mugabo & Robin Buruchara, 2018. "The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 61-79, February.
    18. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    19. Nkegbe, Paul Kwame & Abdul Mumin, Yazeed, 2022. "Impact of community development initiatives and access to community markets on household food security and nutrition in Ghana," Food Policy, Elsevier, vol. 113(C).
    20. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssefpa:v:10:y:2018:i:2:d:10.1007_s12571-018-0777-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.