IDEAS home Printed from https://ideas.repec.org/a/spr/sjecst/v155y2019i1d10.1186_s41937-019-0039-1.html
   My bibliography  Save this article

Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost

Author

Listed:
  • Sophie Maire

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Philippe Thalmann

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Frank Vöhringer

    (Ecole Polytechnique Fédérale de Lausanne (EPFL)
    Econability)

Abstract

This paper is a contribution to assessing the Swiss energy transition, with an emphasis on the consequences of decommissioning the nuclear power plants for the electricity market and the whole economy. We expect that increased renewable generation and demand-side policies of the type already envisioned will not suffice to close the supply gap, so that Switzerland will have to rely on more imports of electricity, moving away from the export surpluses realized almost every year since 1910. As this reference scenario is contrary to desired energy security, a policy scenario is proposed in which net electricity trade is constrained to balance over the year and the supply gap is closed by relaxing the existing restrictions on gas-fired power plants. One constraint replaces another one, so that the impacts are not obvious. Furthermore, the prices of electricity and natural gas evolve quite differently through time and depend on climate and energy policy. We use a modeling framework coupling a detailed representation of electricity generation and an encompassing representation of the macro-economy to compare these scenarios in terms of both total system cost and welfare. Both indicators favor the reference scenario without gas-fired power plants in spite of its higher marginal costs for electricity. The welfare loss of the policy scenario is small, though, much smaller than the increase in total system cost. This shows that a coupled bottom-up top-down modeling framework assessing the welfare effect of policies can yield very different results from those of an energy system model assessing their impact on total system cost.

Suggested Citation

  • Sophie Maire & Philippe Thalmann & Frank Vöhringer, 2019. "Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
  • Handle: RePEc:spr:sjecst:v:155:y:2019:i:1:d:10.1186_s41937-019-0039-1
    DOI: 10.1186/s41937-019-0039-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41937-019-0039-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s41937-019-0039-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wene, C.-O., 1996. "Energy-economy analysis: Linking the macroeconomic and systems engineering approaches," Energy, Elsevier, vol. 21(9), pages 809-824.
    2. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    3. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    4. Kenneth C. Hoffman & Dale W. Jorgenson, 1977. "Economic and Technological Models for Evaluation of Energy Policy," Bell Journal of Economics, The RAND Corporation, vol. 8(2), pages 444-466, Autumn.
    5. Nicolas Weidmann & Ramachandran Kannan & Hal Turton, 2012. "Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 275-316, June.
    6. Chrisoph Böhringer & André Müller & Marcel Wickart, 2003. "Economie Impacts of a Premature Nuclear Phase-Out in Switzerland: An Applied General Equilibrium Analysis," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 139(IV), pages 461-505, December.
    7. Riekkola, Anna Krook & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2013. "Challenges in Soft-Linking: The Case of EMEC and TIMES-Sweden," Working Papers 133, National Institute of Economic Research.
    8. Schafer, Andreas & Jacoby, Henry D., 2005. "Technology detail in a multisector CGE model: transport under climate policy," Energy Economics, Elsevier, vol. 27(1), pages 1-24, January.
    9. Martinsen, Thomas, 2011. "Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models," Energy Policy, Elsevier, vol. 39(6), pages 3327-3336, June.
    10. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    11. Pattupara, Rajesh & Kannan, Ramachandran, 2016. "Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario," Applied Energy, Elsevier, vol. 172(C), pages 152-168.
    12. Lucas Bretschger and Lin Zhang, 2017. "Nuclear Phase-out Under Stringent Climate Policies: A Dynamic Macroeconomic Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pisciella, Paolo & van Beesten, E. Ruben & Tomasgard, Asgeir, 2023. "Efficient coordination of top-down and bottom-up models for energy system design: An algorithmic approach," Energy, Elsevier, vol. 284(C).
    2. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    3. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    4. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.
    5. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
    6. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    7. Durand-Lasserve, Olivier & Almutairi, Hossa & Aljarboua, Abdullah & Pierru, Axel & Pradhan, Shreekar & Murphy, Frederic, 2023. "Hard-linking a top-down economic model with a bottom-up energy system for an oil-exporting country with price controls," Energy, Elsevier, vol. 266(C).
    8. Olegs Krasnopjorovs & Daniels Jukna & Konstantins Kovalovs, 2022. "On the Use of General Equilibrium Model to Assess the Impact of Climate Policy in Latvia," Post-Print hal-03861139, HAL.
    9. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Le Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Post-Print hal-03897206, HAL.
    10. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    11. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    12. Rausch, Sebastian & Zhang, Da, 2018. "Capturing natural resource heterogeneity in top-down energy-economic equilibrium models," Energy Economics, Elsevier, vol. 74(C), pages 917-926.
    13. García-Gusano, Diego & Garraín, Daniel & Dufour, Javier, 2017. "Prospective life cycle assessment of the Spanish electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 21-34.
    14. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    15. Labriet, Maryse & Drouet, Laurent & Vielle, Marc & Loulou, Richard & Kanudia, Amit & Haurie, Alain, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Climate Change and Sustainable Development 199946, Fondazione Eni Enrico Mattei (FEEM).
    16. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    17. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.
    19. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    20. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjecst:v:155:y:2019:i:1:d:10.1186_s41937-019-0039-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.