IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i3d10.1007_s11069-017-2837-z.html
   My bibliography  Save this article

Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble

Author

Listed:
  • Fahad Saeed

    (Sustainable Development Policy Institute
    King Abdul-Aziz University
    Climate Analytics)

  • Mansour Almazroui

    (King Abdul-Aziz University)

  • Nazrul Islam

    (King Abdul-Aziz University)

  • Mariam Saleh Khan

    (Quaid-e-Azam University)

Abstract

Future trends in the occurrence of heat waves (HW) over Pakistan have been presented using three regional climate models (RCMs), forced by three different global climate models (GCMs) runs under RCP8.5 scenarios. The results of RCMs are obtained from CORDEX (Coordinated Regional climate Downscaling EXperiment) database. Two different approaches for the assessment of HWs are defined, namely Fixed and Relative approaches. Fixed approach is defined for a life-threatening extreme event in which the temperature can reach more than 45 °C for a continuous stretch of several days; however, Relative approach events may not be directly life-threatening, but may cause snow/ice melt flooding and impact on food security of the country in summer and winter seasons, respectively. The results indicate a consistent increase in the occurrence of HWs for both approaches. For the Fixed approach, the increase is evident in the eastern areas of Pakistan, particularly plains of Punjab and Sindh provinces which host many big cities of the country. It is argued that the effect of HWs may also be exacerbated in future due to urban heat island effect. Moreover, summer time HWs for Relative approach is most likely to increase over northern areas of the country which hosts reservoirs of snow and glacier, which may result in events like glacial lake outburst flood and snow/ice melt flooding. Furthermore, the increase in winter time HWs for Relative approach may affect negatively on the wheat production, which in turn can distress the overall food productivity and livelihoods of the country. It is concluded that this study may be a useful document for future planning in order to better adapt to these threats due to climate change.

Suggested Citation

  • Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2837-z
    DOI: 10.1007/s11069-017-2837-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2837-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2837-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaodong Du & Dermot J. Hayes & Mindy L. Mallory, 2009. "A Welfare Analysis of the U.S. Ethanol Subsidy," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(4), pages 669-676, December.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. ., 2008. "The Method of Analysis," Chapters, in: Law, Informal Rules and Economic Performance, chapter 10, Edward Elgar Publishing.
    4. V. Mueller & C. Gray & K. Kosec, 2014. "Heat stress increases long-term human migration in rural Pakistan," Nature Climate Change, Nature, vol. 4(3), pages 182-185, March.
    5. ., 2008. "A Survey of Empirical Analysis in Tourism Demand," Chapters, in: The Economics of Small Island Tourism, chapter 3, Edward Elgar Publishing.
    6. Andreas Haensler & Fahad Saeed & Daniela Jacob, 2013. "Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections," Climatic Change, Springer, vol. 121(2), pages 349-363, November.
    7. Maida Zahid & Ghulam Rasul, 2012. "Changing trends of thermal extremes in Pakistan," Climatic Change, Springer, vol. 113(3), pages 883-896, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    2. Walelign, Solomon Zena & Lujala, Päivi, 2022. "A place-based framework for assessing resettlement capacity in the context of displacement induced by climate change," World Development, Elsevier, vol. 151(C).
    3. Shaikh M. S. U. Eskander & Sam Fankhauser, 2022. "Income Diversification and Income Inequality: Household Responses to the 2013 Floods in Pakistan," Sustainability, MDPI, vol. 14(1), pages 1-12, January.
    4. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    5. Sara Karam & Ousmane Seidou & Nidhi Nagabhatla & Duminda Perera & Raphael M. Tshimanga, 2022. "Assessing the impacts of climate change on climatic extremes in the Congo River Basin," Climatic Change, Springer, vol. 170(3), pages 1-24, February.
    6. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    7. Greta C. Dargie & Ian T. Lawson & Tim J. Rayden & Lera Miles & Edward T. A. Mitchard & Susan E. Page & Yannick E. Bocko & Suspense A. Ifo & Simon L. Lewis, 2019. "Congo Basin peatlands: threats and conservation priorities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 669-686, April.
    8. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    9. Mikula, Stepan & Pytlikova, Mariola, 2021. "Air Pollution and Migration: Exploiting a Natural Experiment from the Czech Republic," IZA Discussion Papers 14863, Institute of Labor Economics (IZA).
    10. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    11. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    12. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    13. Els BEKEART & Ilse RUYSSEN & Sara SALOMONE, 2021. "Domestic and International Migration Intentions in Response to Environmental Stress: A Global Cross-country Analysis," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 87(3), pages 383-436, September.
    14. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    15. Michel Beine & Ilan Noy & Christopher Parsons, 2021. "Climate change, migration and voice," Climatic Change, Springer, vol. 167(1), pages 1-27, July.
    16. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    18. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    19. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).
    20. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2837-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.