IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v21y2019i4d10.1007_s11009-018-9675-7.html
   My bibliography  Save this article

Sensitivity of the Stability Bound for Ruin Probabilities to Claim Distributions

Author

Listed:
  • Aicha Bareche

    (University of Bejaia)

  • Mouloud Cherfaoui

    (University of Bejaia
    University of Biskra)

Abstract

We are interested in the approximation of the ruin probability of a classical risk model using the strong stability method. Particularly, we study the sensitivity of the stability bound for ruin probabilities of two risk models to approach (a simpler ideal model and a complex real one, which must be close in some sense) regarding to different large claims (heavy-tailed distributions). In a first case, we study the impact of the tail of some claim distributions on the quality of this approximation using the strong stability of a Markov chain. In a second case, we look at the sensitivity of the stability bound for the ruin probability regarding to different large claims, using two versions of the strong stability method: strong stability of a Markov chain and strong stability of a Lindley process. In both cases, comparative studies based on numerical examples and simulation results, involving different heavy-tailed distributions, are performed.

Suggested Citation

  • Aicha Bareche & Mouloud Cherfaoui, 2019. "Sensitivity of the Stability Bound for Ruin Probabilities to Claim Distributions," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1259-1281, December.
  • Handle: RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-018-9675-7
    DOI: 10.1007/s11009-018-9675-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-018-9675-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-018-9675-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vladimir Kalashnikov, 1999. "Bounds for Ruin Probabilities in the Presence of Large Claims and their Comparison," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 116-128.
    2. Bolance, Catalina & Guillen, Montserrat & Nielsen, Jens Perch, 2003. "Kernel density estimation of actuarial loss functions," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 19-36, February.
    3. Touazi, A. & Benouaret, Z. & Aissani, D. & Adjabi, S., 2017. "Nonparametric estimation of the claim amount in the strong stability analysis of the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 78-83.
    4. Beirlant, J. & Rachev, S. T., 1987. "The problem of stability in insurance mathematics," Insurance: Mathematics and Economics, Elsevier, vol. 6(3), pages 179-188, July.
    5. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    6. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    7. Lanpeng Ji & Chunsheng Zhang, 2014. "A Duality Result for the Generalized Erlang Risk Model," Risks, MDPI, vol. 2(4), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Wilson Euphasio Junior & João Vinícius França Carvalho, 2022. "Resseguro e Capital de Solvência: Atenuantes da Probabilidade de Ruína de SeguradorasReinsurance and Solvency Capital: Mitigating Insurance Companies’ Ruin Probability," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 26(1), pages 200191-2001.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    2. Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
    3. Juxia Xiao & Xu Li & Jianhong Shi, 2019. "Local linear smoothers using inverse Gaussian regression," Statistical Papers, Springer, vol. 60(4), pages 1225-1253, August.
    4. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    5. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    6. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    7. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    8. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    9. Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
    10. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    11. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    12. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    13. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    14. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    15. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    16. Bolancé, Catalina & Guillén, Montserrat & Nielsen, Jens Perch, 2008. "Inverse beta transformation in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1757-1764, September.
    17. J. Baixauli & Susana Alvarez, 2012. "Implied Severity Density Estimation: An Extended Semiparametric Method to Compute Credit Value at Risk," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 115-129, August.
    18. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    19. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    20. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-018-9675-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.