IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v59y2014icp45-56.html
   My bibliography  Save this article

Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?

Author

Listed:
  • Eling, Martin

Abstract

Vernic (2006), Bolancé et al. (2008), and Eling (2012) identify the skew-normal and skew-student as promising models for describing actuarial loss data. In this paper, we change the focus from the liability to the asset side and ask whether these distributions are also useful for analyzing the investment returns of insurance companies. To answer this question, we fit various parametric distributions to capital market data which has been used to describe the investment set of insurance companies. Our results show that the skew-student is an especially promising distribution for modeling asset returns such as those of stocks, bonds, money market instruments, and hedge funds. Combining the results of Vernic (2006), Bolancé et al. (2008), Eling (2012), and this paper, it appears that the skew-student is a promising actuarial tool since it describes both sides of the insurer’s balance sheet reasonably well.

Suggested Citation

  • Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
  • Handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:45-56
    DOI: 10.1016/j.insmatheco.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714000985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    3. Eling, Martin & Gatzert, Nadine & Schmeiser, Hato, 2009. "Minimum standards for investment performance: A new perspective on non-life insurer solvency," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 113-122, August.
    4. Bolance, Catalina & Guillen, Montserrat & Nielsen, Jens Perch, 2003. "Kernel density estimation of actuarial loss functions," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 19-36, February.
    5. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    6. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    7. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," The Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    8. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    9. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    10. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    11. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    12. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Stefan Kassberger & Rüdiger Kiesel, 2006. "A fully parametric approach to return modelling and risk management of hedge funds," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 472-491, December.
    15. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Eling & Ruo Jia, 2017. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2014 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 63-77, March.
    2. Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
    3. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    4. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    5. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    6. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    7. Scholz, Michael & Sperlich, Stefan & Nielsen, Jens Perch, 2016. "Nonparametric long term prediction of stock returns with generated bond yields," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 82-96.
    8. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. Andrés Felipe Galeano Zurbaran, 2018. "Distribuciones no normales para la selección de activos en el mercado Colombiano," Documentos de Trabajo 17208, Quantil.
    10. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    11. Bramante, Riccardo & Zappa, Diego, 2016. "Global versus local beta models: A partitioned distribution approach," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 41-47.
    12. Shushi, Tomer, 2018. "A proof for the existence of multivariate singular generalized skew-elliptical density functions," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 50-55.
    13. Richard T. A. Samuel & Charles Chimedza & Caston Sigauke, 2023. "Simulation Framework to Determine Suitable Innovations for Volatility Persistence Estimation: The GARCH Approach," JRFM, MDPI, vol. 16(9), pages 1-30, September.
    14. Mostafa Tamandi & Ahad Jamalizadeh & Tsung-I Lin, 2019. "Shape mixtures of skew-t-normal distributions: characterizations and estimation," Computational Statistics, Springer, vol. 34(1), pages 323-347, March.
    15. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    16. Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    2. Nicola Loperfido & Tomer Shushi, 2023. "Optimal Portfolio Projections for Skew-Elliptically Distributed Portfolio Returns," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 143-166, October.
    3. Shushi, Tomer, 2018. "A proof for the existence of multivariate singular generalized skew-elliptical density functions," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 50-55.
    4. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    5. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.
    6. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
    7. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    8. Ramon Alemany & Catalina Bolancé & Montserrat Guillén, 2012. "Nonparametric estimation of Value-at-Risk," Working Papers XREAP2012-19, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2012.
    9. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    10. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    11. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    12. Batiz-Zuk, Enrique & Christodoulakis, George & Poon, Ser-Huang, 2015. "Credit contagion in the presence of non-normal shocks," International Review of Financial Analysis, Elsevier, vol. 37(C), pages 129-139.
    13. Douadia Bougherara & Laurent Piet, 2018. "On the role of probability weighting on WTP for crop insurance with and without yield skewness," Working Papers hal-02790605, HAL.
    14. David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    15. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    16. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    17. Barbi, Massimiliano & Romagnoli, Silvia, 2018. "Skewness, basis risk, and optimal futures demand," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 14-29.
    18. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    19. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    20. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:45-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.