Advanced Search
MyIDEAS: Login

Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R

Contents:

Author Info

  • David Pitt

    ()
    (Department of Applied Finance and Actuarial Studies, Macquarie University, Sydney, New South Wales, 2109 Australia)

  • Montserrat Guillen

    ()
    (RFA-IREA, Departament d’Econometria, Estadística i Economia Espanyola, Avda. Diagonal 690, 08034 Barcelona)

  • Catalina Bolancé

    ()
    (RFA-IREA, Departament d’Econometria, Estadística i Economia Espanyola, Avda. Diagonal 690, 08034 Barcelona)

Abstract

This paper presents an analysis of motor vehicle insurance claims relating to vehicle damage and to associated medical expenses. We use univariate severity distributions estimated with parametric and non-parametric methods. The methods are implemented using the statistical package R. Parametric analysis is limited to estimation of normal and lognormal distributions for each of the two claim types. The nonparametric analysis presented involves kernel density estimation. We illustrate the benefits of applying transformations to data prior to employing kernel based methods. We use a log-transformation and an optimal transformation amongst a class of transformations that produces symmetry in the data. The central aim of this paper is to provide educators with material that can be used in the classroom to teach statistical estimation methods, goodness of fit analysis and importantly statistical computing in the context of insurance and risk management. To this end, we have included in the Appendix of this paper all the R code that has been used in the analysis so that readers, both students and educators, can fully explore the techniques described.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.pcb.ub.edu/xreap/aplicacio/fitxers/XREAP2011-06.pdf
File Function: First version, 2011
Download Restriction: no

File URL: http://www.pcb.ub.edu/xreap/aplicacio/fitxers/XREAP2011-06.pdf
File Function: Revised version, 2011
Download Restriction: no

Bibliographic Info

Paper provided by Xarxa de Referència en Economia Aplicada (XREAP) in its series Working Papers with number XREAP2011-06.

as in new window
Length: 48 pages
Date of creation: Jun 2011
Date of revision: Jun 2011
Handle: RePEc:xrp:wpaper:xreap2011-06

Contact details of provider:
Postal: Espai de Recerca en Economia, Facultat de Ciències Econòmiques i Empresarials, Universitat de Barcelona, c/ Tinent Coronel Valenzuela, 1-11, 08034 Barcelona
Phone: +34+934039653
Email:
Web page: http://www.pcb.ub.edu/xreap
More information through EDIRC

Related research

Keywords: .;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bolancé, Catalina & Guillén, Montserrat & Nielsen, Jens Perch, 2008. "Inverse beta transformation in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1757-1764, September.
  2. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
  3. Hall, Peter & Marron, J. S., 1987. "Estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 109-115, November.
  4. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
  5. Clements A. & Hurn S. & Lindsay K., 2003. "Mobius-Like Mappings and Their Use in Kernel Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 993-1000, January.
  6. Bolance, Catalina & Guillen, Montserrat & Nielsen, Jens Perch, 2003. "Kernel density estimation of actuarial loss functions," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 19-36, February.
  7. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
  8. Wu, Tiee-Jian & Chen, Ching-Fu & Chen, Huang-Yu, 2007. "A variable bandwidth selector in multivariate kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 462-467, February.
  9. Qing Liu & David Pitt & Xibin Zhang & Xueyuan Wu, 2010. "A Bayesian approach to parameter estimation for kernel density estimation via transformations," Monash Econometrics and Business Statistics Working Papers 18/10, Monash University, Department of Econometrics and Business Statistics.
  10. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:xrp:wpaper:xreap2011-06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () The email address of this maintainer does not seem to be valid anymore. Please ask to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.