IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i6d10.1007_s11027-022-10018-5.html
   My bibliography  Save this article

The G20 emission projections to 2030 improved since the Paris Agreement, but only slightly

Author

Listed:
  • Leonardo Nascimento

    (NewClimate Institute
    Wageningen University & Research)

  • Takeshi Kuramochi

    (NewClimate Institute
    Copernicus Institute of Sustainable Development, Utrecht University)

  • Niklas Höhne

    (NewClimate Institute
    Wageningen University & Research)

Abstract

Many years passed since the adoption of the Paris Agreement, which invites countries to determine their own contributions to climate change mitigation efforts. The Agreement does not offer a standard to measure progress but relies on a process of periodic stocktakes to inform ambition-raising cycles. To contribute to this process, we compare 2021 greenhouse gas emission projections up to 2030 against equivalent projections prepared back in 2015. Both sets of projections were prepared using the same bottom-up modelling approach that accounts for adopted policies at the time. We find that 2021 projections for the G20 as a group are almost 15% lower (approximately 6 GtCO2eq) in 2030 than projected in 2015. Annual emissions grow 1% slower in the coming decade than projected in 2015. This slower growth mostly stems from the adoption of new policies and updated expectations on technology uptake and economic growth. However, around one-quarter of these changes are explained by the effects of the COVID-19 pandemic on short-term emissions and economic forecasts. These factors combined result in substantially lower emission projections for India, the European Union plus the UK (EU27 + UK), the Unites States, Russia, Saudi Arabia, and South Africa. We observe a remarkable change in South African projections that changed from a substantial increase to now a decline, driven in part by the planned phase-out of most of its coal-based power. Emissions in India are projected to grow slower than in 2015 and in Indonesia faster, but emissions per capita in both countries remain below 5 tCO2eq in 2030, while those in the EU27 + UK decline faster than expected in 2015 and probably cross the 5 tCO2eq threshold before 2030. Projected emissions per capita in Australia, Canada, Saudi Arabia, and the United States are now lower than projected in 2015 but remain above 15 tCO2eq in 2030. Although emission projections for the G20 improved since 2015, collectively they still slightly increase until 2030 and remain insufficient to meet the Paris Agreement temperature goals. The G20 must urgently and drastically improve adopted policies and actions to limit the end-of-century warming to 1.5 °C.

Suggested Citation

  • Leonardo Nascimento & Takeshi Kuramochi & Niklas Höhne, 2022. "The G20 emission projections to 2030 improved since the Paris Agreement, but only slightly," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-24, August.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:6:d:10.1007_s11027-022-10018-5
    DOI: 10.1007/s11027-022-10018-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10018-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10018-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. den Elzen, Michel & Kuramochi, Takeshi & Höhne, Niklas & Cantzler, Jasmin & Esmeijer, Kendall & Fekete, Hanna & Fransen, Taryn & Keramidas, Kimon & Roelfsema, Mark & Sha, Fu & van Soest, Heleen & Vand, 2019. "Are the G20 economies making enough progress to meet their NDC targets?," Energy Policy, Elsevier, vol. 126(C), pages 238-250.
    2. Sebastian Rauner & Nico Bauer & Alois Dirnaichner & Rita Van Dingenen & Chris Mutel & Gunnar Luderer, 2020. "Coal-exit health and environmental damage reductions outweigh economic impacts," Nature Climate Change, Nature, vol. 10(4), pages 308-312, April.
    3. Niklas Höhne & Matthew J. Gidden & Michel Elzen & Frederic Hans & Claire Fyson & Andreas Geiges & M. Louise Jeffery & Sofia Gonzales-Zuñiga & Silke Mooldijk & William Hare & Joeri Rogelj, 2021. "Wave of net zero emission targets opens window to meeting the Paris Agreement," Nature Climate Change, Nature, vol. 11(10), pages 820-822, October.
    4. Navroz K. Dubash, 2020. "Climate laws help reduce emissions," Nature Climate Change, Nature, vol. 10(8), pages 709-710, August.
    5. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    6. Corinne Le Quéré & Jan Ivar Korsbakken & Charlie Wilson & Jale Tosun & Robbie Andrew & Robert J. Andres & Josep G. Canadell & Andrew Jordan & Glen P. Peters & Detlef P. van Vuuren, 2019. "Drivers of declining CO2 emissions in 18 developed economies," Nature Climate Change, Nature, vol. 9(3), pages 213-217, March.
    7. Peter Christoff & Robyn Eckersley, 2021. "Convergent evolution: framework climate legislation in Australia," Climate Policy, Taylor & Francis Journals, vol. 21(9), pages 1190-1204, October.
    8. Erick Lachapelle & Matthew Paterson, 2013. "Drivers of national climate policy," Climate Policy, Taylor & Francis Journals, vol. 13(5), pages 547-571, September.
    9. Edward B. Barbier, 2020. "Greening the Post-pandemic Recovery in the G20," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 685-703, August.
    10. Shaikh M. S. U. Eskander & Sam Fankhauser, 2020. "Reduction in greenhouse gas emissions from national climate legislation," Nature Climate Change, Nature, vol. 10(8), pages 750-756, August.
    11. Giacomo Grassi & Jo House & Frank Dentener & Sandro Federici & Michel den Elzen & Jim Penman, 2017. "The key role of forests in meeting climate targets requires science for credible mitigation," Nature Climate Change, Nature, vol. 7(3), pages 220-226, March.
    12. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    13. Heleen L. Soest & Michel G. J. Elzen & Detlef P. Vuuren, 2021. "Net-zero emission targets for major emitting countries consistent with the Paris Agreement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Luís M. Fazendeiro & Sofia G. Simões, 2021. "Historical Variation of IEA Energy and CO 2 Emission Projections: Implications for Future Energy Modeling," Sustainability, MDPI, vol. 13(13), pages 1-27, July.
    15. João Sicsú & Andre de Melo Modenesi & Débora Pimentel, 2021. "Severe recession with inflation: the case of Brazil," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 44(1), pages 89-111, January.
    16. Frank Jotzo & Joanna Depledge & Harald Winkler, 2018. "US and international climate policy under President Trump," Climate Policy, Taylor & Francis Journals, vol. 18(7), pages 813-817, August.
    17. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    18. Michaël Aklin & Johannes Urpelainen, 2013. "Political Competition, Path Dependence, and the Strategy of Sustainable Energy Transitions," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 643-658, July.
    19. Ida Sognnaes & Ajay Gambhir & Dirk-Jan van de Ven & Alexandros Nikas & Annela Anger-Kraavi & Ha Bui & Lorenza Campagnolo & Elisa Delpiazzo & Haris Doukas & Sara Giarola & Neil Grant & Adam Hawkes & Al, 2021. "A multi-model analysis of long-term emissions and warming implications of current mitigation efforts," Nature Climate Change, Nature, vol. 11(12), pages 1055-1062, December.
    20. Fekete, Hanna & Kuramochi, Takeshi & Roelfsema, Mark & Elzen, Michel den & Forsell, Nicklas & Höhne, Niklas & Luna, Lisa & Hans, Frederic & Sterl, Sebastian & Olivier, Jos & van Soest, Heleen & Frank,, 2021. "A review of successful climate change mitigation policies in major emitting economies and the potential of global replication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    21. Baris Karapinar & Hasan Dudu & Ozge Geyik & Aykut Mert Yakut, 2020. "How to reach an elusive INDC target: macro-economic implications of carbon taxation and emissions trading in Turkey," Climate Policy, Taylor & Francis Journals, vol. 19(9), pages 1157-1172, July.
    22. Niklas Höhne & Michel den Elzen & Joeri Rogelj & Bert Metz & Taryn Fransen & Takeshi Kuramochi & Anne Olhoff & Joseph Alcamo & Harald Winkler & Sha Fu & Michiel Schaeffer & Roberto Schaeffer & Glen P., 2020. "Emissions: world has four times the work or one-third of the time," Nature, Nature, vol. 579(7797), pages 25-28, March.
    23. Sam Fankhauser & Stephen M. Smith & Myles Allen & Kaya Axelsson & Thomas Hale & Cameron Hepburn & J. Michael Kendall & Radhika Khosla & Javier Lezaun & Eli Mitchell-Larson & Michael Obersteiner & Lava, 2022. "The meaning of net zero and how to get it right," Nature Climate Change, Nature, vol. 12(1), pages 15-21, January.
    24. Joeri Rogelj & Oliver Geden & Annette Cowie & Andy Reisinger, 2021. "Net-zero emissions targets are vague: three ways to fix," Nature, Nature, vol. 591(7850), pages 365-368, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Sustainable Energy Development: History and Recent Advances," Energies, MDPI, vol. 16(20), pages 1-44, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-29, June.
    2. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    3. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    4. Lea Berrang‐Ford & Friederike Döbbe & Ruth Garside & Neal Haddaway & William F. Lamb & Jan C. Minx & Wolfgang Viechtbauer & Vivian Welch & Howard White, 2020. "Editorial: Evidence synthesis for accelerated learning on climate solutions," Campbell Systematic Reviews, John Wiley & Sons, vol. 16(4), December.
    5. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Shaikh Eskander & Sam Fankhauser & Joana Setzer, 2021. "Global Lessons from Climate Change Legislation and Litigation," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 2(1), pages 44-82.
    7. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    8. Böhringer, Christoph & Rosendahl, Knut Einar, 2022. "Europe beyond coal – An economic and climate impact assessment," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    9. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    10. Robert Huang & Matthew E. Kahn, 2024. "Do Red States Have a Comparative Advantage in Generating Green Power?," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 5(1), pages 200-238.
    11. Diluiso, Francesca & Annicchiarico, Barbara & Kalkuhl, Matthias & Minx, Jan C., 2021. "Climate actions and macro-financial stability: The role of central banks," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    12. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    13. Fatemeh Dehdar & Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Nazia Nazeer, 2022. "The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions," Energies, MDPI, vol. 15(22), pages 1-17, November.
    14. Winkelmann, Ricarda & Donges, Jonathan F. & Smith, E. Keith & Milkoreit, Manjana & Eder, Christina & Heitzig, Jobst & Katsanidou, Alexia & Wiedermann, Marc & Wunderling, Nico & Lenton, Timothy M., 2022. "Social tipping processes towards climate action: A conceptual framework," Ecological Economics, Elsevier, vol. 192(C).
    15. Samson Mukanjari & Thomas Sterner, 2020. "Charting a “Green Path” for Recovery from COVID-19," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 825-853, August.
    16. Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
    17. Matthew Lockwood & Caroline Kuzemko & Catherine Mitchell & Richard Hoggett, 2017. "Historical institutionalism and the politics of sustainable energy transitions: A research agenda," Environment and Planning C, , vol. 35(2), pages 312-333, March.
    18. Konjević, Lucija & Racar, Marko & Ilinčić, Petar & Faraguna, Fabio, 2023. "A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol," Energy, Elsevier, vol. 262(PA).
    19. Koasidis, Konstantinos & Nikas, Alexandros & Van de Ven, Dirk-Jan & Xexakis, Georgios & Forouli, Aikaterini & Mittal, Shivika & Gambhir, Ajay & Koutsellis, Themistoklis & Doukas, Haris, 2022. "Towards a green recovery in the EU: Aligning further emissions reductions with short- and long-term energy-sector employment gains," Energy Policy, Elsevier, vol. 171(C).
    20. Ma, Y. & Li, Y.P. & Huang, G.H., 2023. "Planning China’s non-deterministic energy system (2021–2060) to achieve carbon neutrality," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:6:d:10.1007_s11027-022-10018-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.