IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v20y2017i1d10.1007_s10951-016-0470-4.html
   My bibliography  Save this article

An integrated model for the transshipment yard scheduling problem

Author

Listed:
  • Mateusz Cichenski

    (Poznan University of Technology)

  • Florian Jaehn

    (Poznan University of Technology
    University of Augsburg)

  • Grzegorz Pawlak

    (Poznan University of Technology)

  • Erwin Pesch

    (Poznan University of Technology
    University of Siegen)

  • Gaurav Singh

    (CSIRO Digital Productivity Flagship, Commonwealth Scientific and Industrial Research Organisation)

  • Jacek Blazewicz

    (Poznan University of Technology)

Abstract

A hub-and-spoke railway system is an efficient way of handling freight transport by land. A modern rail–rail train yard consists of huge gantry cranes that move the containers between the trains. In this context, we consider a rail–rail transshipment yard scheduling problem (TYSP) where the containers arrive to the hub and need to be placed on a train that will deliver them to their destination. In the literature, the problem is decomposed hierarchically into five subproblems, which are solved separately. First, the trains have to be grouped into bundles in which they visit the yard. Next, the trains have to be assigned to tracks within these bundles, namely parking positions. Then the final positions for the containers on trains have to be determined. Next, the container moves that need to be performed are assigned to the cranes. Finally, these moves have to be sequenced for each crane for processing. In this paper, an integrated MILP model is proposed, which aims to solve the TYSP as a single optimization problem. The proposed formulation also enables us to define more robust and complex objective functions that include key characteristics from each of the above-mentioned subproblems. The strength of our proposed formulation is demonstrated via computational experiments using the data from the literature. Indeed, the results show that the TYSP can be solved without the use of decomposition techniques and more insight can be obtained from the same input data used to solve particular single decomposed subproblems.

Suggested Citation

  • Mateusz Cichenski & Florian Jaehn & Grzegorz Pawlak & Erwin Pesch & Gaurav Singh & Jacek Blazewicz, 2017. "An integrated model for the transshipment yard scheduling problem," Journal of Scheduling, Springer, vol. 20(1), pages 57-65, February.
  • Handle: RePEc:spr:jsched:v:20:y:2017:i:1:d:10.1007_s10951-016-0470-4
    DOI: 10.1007/s10951-016-0470-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-016-0470-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-016-0470-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nathalie Bostel & Pierre Dejax, 1998. "Models and Algorithms for Container Allocation Problems on Trains in a Rapid Transshipment Shunting Yard," Transportation Science, INFORMS, vol. 32(4), pages 370-379, November.
    2. Fernando Marín Martínez & Isabel García Gutiérrez & Alberto Ortiz Oliveira & Luis Miguel Arreche Bedia, 2004. "Gantry crane operations to transfer containers between trains: A simulation study of a Spanish terminal," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(4), pages 261-284, August.
    3. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
    4. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    5. Boysen, Nils & Fliedner, Malte, 2010. "Determining crane areas in intermodal transshipment yards: The yard partition problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 336-342, July.
    6. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    7. Harald Rotter, 2004. "New operating concepts for intermodal transport: The mega hub in Hanover/Lehrte in Germany," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(5), pages 347-365, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    2. Schulz, Arne & Fliedner, Malte & Fiedrich, Benedikt & Pfeiffer, Christian, 2021. "Levelling crane workload in multi-yard rail-road container terminals," European Journal of Operational Research, Elsevier, vol. 293(3), pages 941-954.
    3. Tamannaei, Mohammad & Zarei, Hamid & Rasti-Barzoki, Morteza, 2021. "A game theoretic approach to sustainable freight transportation: Competition between road and intermodal road–rail systems with government intervention," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 272-295.
    4. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    2. Stefan Fedtke & Nils Boysen, 2017. "Gantry crane and shuttle car scheduling in modern rail–rail transshipment yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 473-503, March.
    3. Alena Otto & Xiyu Li & Erwin Pesch, 2017. "Two-Way Bounded Dynamic Programming Approach for Operations Planning in Transshipment Yards," Transportation Science, INFORMS, vol. 51(1), pages 325-342, February.
    4. Boysen, Nils & Fliedner, Malte, 2010. "Determining crane areas in intermodal transshipment yards: The yard partition problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 336-342, July.
    5. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
    6. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    7. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    8. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    9. Martin Tschöke & Nils Boysen, 2018. "Container supply with multi-trailer trucks: parking strategies to speed up the gantry crane-based loading of freight trains in rail yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 319-339, March.
    10. Cao, Chengxuan & Gao, Ziyou & Li, Keping, 2012. "Capacity allocation problem with random demands for the rail container carrier," European Journal of Operational Research, Elsevier, vol. 217(1), pages 214-221.
    11. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    12. Konrad Stephan & Nils Boysen, 2017. "Crane scheduling in railway yards: an analysis of computational complexity," Journal of Scheduling, Springer, vol. 20(5), pages 507-526, October.
    13. Ambrosino, Daniela & Siri, Silvia, 2015. "Comparison of solution approaches for the train load planning problem in seaport terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 65-82.
    14. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    15. Schulz, Arne & Fliedner, Malte & Fiedrich, Benedikt & Pfeiffer, Christian, 2021. "Levelling crane workload in multi-yard rail-road container terminals," European Journal of Operational Research, Elsevier, vol. 293(3), pages 941-954.
    16. Nils Boysen & Joachim Scholl & Konrad Stephan, 2017. "When road trains supply freight trains: scheduling the container loading process by gantry crane between multi-trailer trucks and freight trains," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 137-164, January.
    17. Maksim Barketau & Erwin Pesch & Yakov Shafransky, 2016. "Scheduling dedicated jobs with variative processing times," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 774-785, February.
    18. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    19. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    20. Metin Türkay & Öztürk Saraçoğlu & Mehmet Can Arslan, 2016. "Sustainability in Supply Chain Management: Aggregate Planning from Sustainability Perspective," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:20:y:2017:i:1:d:10.1007_s10951-016-0470-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.