IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v162y2022icp73-102.html
   My bibliography  Save this article

Modeling landside container terminal queues: Exact analysis and approximations

Author

Listed:
  • Roy, Debjit
  • van Ommeren, Jan-Kees
  • de Koster, René
  • Gharehgozli, Amir

Abstract

With the growth of ocean transport and with increasing vessel sizes, managing congestion at the landside of container terminals has become a major challenge. The landside of a sea terminal handles containers that arrive or depart via train or truck. Large sea terminals have to handle thousands of trucks and dozens of trains per day. As trains run on fixed schedule, their containers are prioritized in stacking and internal transport handling. This has consequences for the service of external trucks, which might be subject to delays. We analyze the impact of prioritization on such delays using a stochastic stylized semi-open queuing network model with bulk arrivals (of containers on trains), shared stack crane resources, and multi-class containers. We use the theory of regenerative processes and Markov chain analysis to analyze the network. The proposed network solution algorithm works for large-scale systems and yields sufficiently accurate estimates for performance measurement. The model can capture priority service for containers at the shared stack cranes, while preserving strict handling priorities. The model is used to explore the choice of different internal transport vehicles (with coupled versus decoupled operations at the stack and train gantry cranes) to understand the effect on delays. Our results show that decoupled transport vehicles in comparison to coupled vehicles can mitigate the external truck container handling delays at shared stack cranes by a large extent (up to 12%). However, decoupled vehicles marginally increase the train container handling delays at shared stack cranes (up to 6%). When train arrival rates are low, prioritizing the handling of train containers at the stack cranes significantly reduces their delays. Further, such prioritization hardly delays external truck containers.

Suggested Citation

  • Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
  • Handle: RePEc:eee:transb:v:162:y:2022:i:c:p:73-102
    DOI: 10.1016/j.trb.2022.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522000893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frisch, Sarah & Hungerländer, Philipp & Jellen, Anna & Primas, Bernhard & Steininger, Sebastian & Weinberger, Dominic, 2021. "Solving a real-world Locomotive Scheduling Problem with Maintenance Constraints," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 386-409.
    2. Huisman, Tijs & Boucherie, Richard J. & van Dijk, Nico M., 2002. "A solvable queueing network model for railway networks and its validation and applications for the Netherlands," European Journal of Operational Research, Elsevier, vol. 142(1), pages 30-51, October.
    3. Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.
    4. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    5. Gang Chen & Zhongzhen Yang, 2010. "Optimizing time windows for managing export container arrivals at Chinese container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(1), pages 111-126, March.
    6. Lai, Yung-Cheng & Barkan, Christopher P.L. & Önal, Hayri, 2008. "Optimizing the aerodynamic efficiency of intermodal freight trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 820-834, September.
    7. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    8. Torkjazi, Mohammad & Huynh, Nathan & Shiri, Samaneh, 2018. "Truck appointment systems considering impact to drayage truck tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 208-228.
    9. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    10. Kizilay, Damla & Hentenryck, Pascal Van & Eliiyi, Deniz T., 2020. "Constraint programming models for integrated container terminal operations," European Journal of Operational Research, Elsevier, vol. 286(3), pages 945-962.
    11. Erhun Özkan & Amy R. Ward, 2019. "On the Control of Fork-Join Networks," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 532-564, May.
    12. Changqian Guan & Rongfang (Rachel) Liu, 2009. "Container terminal gate appointment system optimization," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 378-398, December.
    13. Vibhuti Dhingra & Debjit Roy & René B. M. Koster, 2017. "A cooperative quay crane-based stochastic model to estimate vessel handling time," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 97-124, March.
    14. Nishant Mishra & Debjit Roy & Jan-Kees van Ommeren, 2017. "A Stochastic Model for Interterminal Container Transportation," Transportation Science, INFORMS, vol. 51(1), pages 67-87, February.
    15. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    16. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    17. Yang, Chung-Shan, 2019. "Maritime shipping digitalization: Blockchain-based technology applications, future improvements, and intention to use," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 108-117.
    18. Upadhyay, Amit & Gu, Weihua & Bolia, Nomesh, 2017. "Optimal loading of double-stack container trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 1-22.
    19. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    20. Ananth Krishnamurthy & Rajan Suri & Mary Vernon, 2004. "Analysis of a Fork/Join Synchronization Station with Inputs from Coxian Servers in a Closed Queuing Network," Annals of Operations Research, Springer, vol. 125(1), pages 69-94, January.
    21. Kang, Seungmo & Medina, Juan C. & Ouyang, Yanfeng, 2008. "Optimal operations of transportation fleet for unloading activities at container ports," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 970-984, December.
    22. Debjit Roy & Akash Gupta & René B.M. De Koster, 2016. "A non-linear traffic flow-based queuing model to estimate container terminal throughput with AGVs," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 472-493, January.
    23. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    24. Debjit Roy, 2016. "Semi-open queuing networks: a review of stochastic models, solution methods and new research areas," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1735-1752, March.
    25. Xie, Ying & Song, Dong-Ping, 2018. "Optimal planning for container prestaging, discharging, and loading processes at seaport rail terminals with uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 88-109.
    26. You, Jintao & Miao, Lixin & Zhang, Canrong & Xue, Zhaojie, 2020. "A generic model for the local container drayage problem using the emerging truck platooning operation mode," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 181-209.
    27. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
    28. Amit Upadhyay, 2020. "Improving Intermodal Train Operations in Indian Railways," Interfaces, INFORMS, vol. 50(4), pages 213-224, July.
    29. Roy, Debjit & de Koster, René, 2018. "Stochastic modeling of unloading and loading operations at a container terminal using automated lifting vehicles," European Journal of Operational Research, Elsevier, vol. 266(3), pages 895-910.
    30. Bruck, Bruno P. & Cordeau, Jean-François & Frejinger, Emma, 2021. "Integrated inbound train split and load planning in an intermodal railway terminal," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 270-289.
    31. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    32. Huisman, Tijs & Boucherie, Richard J., 2001. "Running times on railway sections with heterogeneous train traffic," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 271-292, March.
    33. Chen, Shukai & Wang, Hua & Meng, Qiang, 2021. "Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 289-315.
    34. Qu Hu & Bart Wiegmans & Francesco Corman & Gabriel Lodewijks, 2019. "Integration of inter-terminal transport and hinterland rail transport," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 807-831, September.
    35. Wang, Junjin & Liu, Jiaguo & Wang, Fan & Yue, Xiaohang, 2021. "Blockchain technology for port logistics capability: Exclusive or sharing," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 347-392.
    36. Mark A. Turnquist & Mark S. Daskin, 1982. "Queuing Models of Classification and Connection Delay in Railyards," Transportation Science, INFORMS, vol. 16(2), pages 207-230, May.
    37. Budhi Wibowo & Jan Fransoo, 2021. "Joint-optimization of a truck appointment system to alleviate queuing problems in chemical plants," International Journal of Production Research, Taylor & Francis Journals, vol. 59(13), pages 3935-3950, July.
    38. Ambrosino, Daniela & Siri, Silvia, 2015. "Comparison of solution approaches for the train load planning problem in seaport terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 65-82.
    39. Phan, Mai-Ha & Kim, Kap Hwan, 2016. "Collaborative truck scheduling and appointments for trucking companies and container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 37-50.
    40. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    41. Schulz, Arne & Fliedner, Malte & Fiedrich, Benedikt & Pfeiffer, Christian, 2021. "Levelling crane workload in multi-yard rail-road container terminals," European Journal of Operational Research, Elsevier, vol. 293(3), pages 941-954.
    42. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    43. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
    44. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    45. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    46. Jing Jia & Sunderesh S. Heragu, 2009. "Solving Semi-Open Queuing Networks," Operations Research, INFORMS, vol. 57(2), pages 391-401, April.
    47. Mantovani, Serena & Morganti, Gianluca & Umang, Nitish & Crainic, Teodor Gabriel & Frejinger, Emma & Larsen, Eric, 2018. "The load planning problem for double-stack intermodal trains," European Journal of Operational Research, Elsevier, vol. 267(1), pages 107-119.
    48. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    49. Michal Dorda & Dušan Teichmann, 2013. "Modelling of Freight Trains Classification Using Queueing System Subject to Breakdowns," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-11, October.
    50. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    51. Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
    52. Amir Hossein Gharehgozli & René de Koster & Rick Jansen, 2017. "Collaborative solutions for inter terminal transport," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6527-6546, November.
    53. Boysen, Nils & Fliedner, Malte, 2010. "Determining crane areas in intermodal transshipment yards: The yard partition problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 336-342, July.
    54. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    55. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    56. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    57. Ilaria Vacca & Matteo Salani & Michel Bierlaire, 2013. "An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment," Transportation Science, INFORMS, vol. 47(2), pages 148-161, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonit Barron, 2023. "The Delay Time Profile of Multistage Networks with Synchronization," Mathematics, MDPI, vol. 11(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    2. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    3. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    5. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    6. Feng, Xuehao & He, Yucheng & Kim, Kap-Hwan, 2022. "Space planning considering congestion in container terminal yards," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 52-77.
    7. Zhongbin Zhao & Xifu Wang & Suxin Cheng & Wei Liu & Lijun Jiang, 2022. "A New Synchronous Handling Technology of Double Stack Container Trains in Sea-Rail Intermodal Terminals," Sustainability, MDPI, vol. 14(18), pages 1, September.
    8. Budhi S. Wibowo & Jan C. Fransoo, 2023. "Performance analysis of a drop-swap terminal to mitigate truck congestion at chemical sites," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 416-454, June.
    9. Li, Xinyan & Xie, Chi & Bao, Zhaoyao, 2022. "A multimodal multicommodity network equilibrium model with service capacity and bottleneck congestion for China-Europe containerized freight flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    11. Zhang, Xiaoju & Zeng, Qingcheng & Sheu, Jiuh-Biing, 2019. "Modeling the productivity and stability of a terminal operation system with quay crane double cycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 181-197.
    12. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    14. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    15. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    16. Mohammad Torkjazi & Nathan Huynh & Ali Asadabadi, 2022. "Modeling the Truck Appointment System as a Multi-Player Game," Logistics, MDPI, vol. 6(3), pages 1-25, July.
    17. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    18. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    19. Stefan Fedtke & Nils Boysen, 2017. "Gantry crane and shuttle car scheduling in modern rail–rail transshipment yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 473-503, March.
    20. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:162:y:2022:i:c:p:73-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.