IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v31y2019i3d10.1007_s10696-019-09345-8.html
   My bibliography  Save this article

Integration of inter-terminal transport and hinterland rail transport

Author

Listed:
  • Qu Hu

    (Delft University of Technology)

  • Bart Wiegmans

    (Delft University of Technology
    University of Manitoba)

  • Francesco Corman

    (ETH Zürich)

  • Gabriel Lodewijks

    (The University of NSW)

Abstract

This paper investigates the problem of inter-terminal movements of containers and vehicles within a port area in order to achieve an integrated and effective transport within the port and towards the hinterland. Containers from different port terminals are first moved to a rail yard and then delivered to the hinterland by rail. To provide insights for stakeholders such as port authority and terminal operators into tactical planning problems, e.g., the coordination between terminals, railway timetable and train sizes, this paper proposes an optimization model describing the movement of containers and various vehicles between and inside terminals. The model aims at improving the container delivery from container terminals to the hinterland considering both railway hinterland transport and terminal handling operations. A network inspired by a real-life port area and its hinterland is used as a test case to test different components, i.e., inter-terminal transport connections, train formation, railway timetable. A rolling horizon framework is used to improve the computation efficiency in large transport demand cases. The result of the optimization helps in identifying the most promising features, namely, that more connections between terminals and a flexible outbound railway timetable could contribute to improving the integrated container transport performance.

Suggested Citation

  • Qu Hu & Bart Wiegmans & Francesco Corman & Gabriel Lodewijks, 2019. "Integration of inter-terminal transport and hinterland rail transport," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 807-831, September.
  • Handle: RePEc:spr:flsman:v:31:y:2019:i:3:d:10.1007_s10696-019-09345-8
    DOI: 10.1007/s10696-019-09345-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-019-09345-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-019-09345-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tierney, Kevin & Voß, Stefan & Stahlbock, Robert, 2014. "A mathematical model of inter-terminal transportation," European Journal of Operational Research, Elsevier, vol. 235(2), pages 448-460.
    2. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    3. Cacchiani, Valentina & Caprara, Alberto & Toth, Paolo, 2010. "Scheduling extra freight trains on railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 215-231, February.
    4. Leonard Heilig & Eduardo Lalla-Ruiz & Stefan Voß, 2017. "port-IO: an integrative mobile cloud platform for real-time inter-terminal truck routing optimization," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 504-534, December.
    5. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    6. Erhan Kozan, 2006. "Optimum Capacity for Intermodal Container Terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 29(6), pages 471-482, September.
    7. Schepler, Xavier & Balev, Stefan & Michel, Sophie & Sanlaville, Éric, 2017. "Global planning in a multi-terminal and multi-modal maritime container port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 38-62.
    8. Boysen, Nils & Fliedner, Malte, 2010. "Determining crane areas in intermodal transshipment yards: The yard partition problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 336-342, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kjetil Fagerholt & Kap Hwan Kim & Qiang Meng & Julio César Góez & Frank Meisel & Magnus Stålhane, 2019. "Analytics and models for maritime logistics and systems," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 563-566, September.
    2. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    3. Dawn Russell & Kusumal Ruamsook & Violeta Roso, 2022. "Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 92-113, March.
    4. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    2. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    3. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    4. Daniela Ambrosino & Claudia Caballini, 2019. "New solution approaches for the train load planning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 299-325, September.
    5. Maloni, Michael J. & Jackson, Eric C., 2007. "Stakeholder Contributions to Container Port Capacity: A Survey of Port Authorities," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(1).
    6. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    7. Bart Wiegmans & Behzad Behdani, 2018. "A review and analysis of the investment in, and cost structure of, intermodal rail terminals," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 33-51, January.
    8. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Zhongbin Zhao & Xifu Wang & Suxin Cheng & Wei Liu & Lijun Jiang, 2022. "A New Synchronous Handling Technology of Double Stack Container Trains in Sea-Rail Intermodal Terminals," Sustainability, MDPI, vol. 14(18), pages 1, September.
    10. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    11. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    12. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    13. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    14. Evrim Ursavas, 2017. "Crane allocation with stability considerations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 379-401, June.
    15. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    16. Roy, D. & de Koster, M.B.M., 2014. "Modeling and Design of Container Terminal Operations," ERIM Report Series Research in Management ERS-2014-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Heilig, Leonard & Lalla-Ruiz, Eduardo & Voß, Stefan, 2017. "Multi-objective inter-terminal truck routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 178-202.
    18. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    19. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
    20. Fan Bu & Heather Nachtmann, 2023. "Literature review and comparative analysis of inland waterways transport: “Container on Barge”," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 140-173, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:31:y:2019:i:3:d:10.1007_s10696-019-09345-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.