IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v150y2011i1d10.1007_s10957-011-9824-4.html
   My bibliography  Save this article

Subgame Consistent Cooperative Solution of Dynamic Games with Random Horizon

Author

Listed:
  • D. W. K. Yeung

    (Hong Kong Shue Yan University
    St. Petersburg State University)

  • L. A. Petrosyan

    (St. Petersburg State University)

Abstract

In cooperative dynamic games, a stringent condition—that of subgame consistency—is required for a dynamically stable cooperative solution. In particular, under a subgame-consistent cooperative solution an extension of the solution policy to a subgame starting at a later time with a state brought about by prior optimal behavior will remain optimal. This paper extends subgame-consistent solutions to dynamic (discrete-time) cooperative games with random horizon. In the analysis, new forms of the Bellman equation and the Isaacs–Bellman equation in discrete-time are derived. Subgame-consistent cooperative solutions are obtained for this class of dynamic games. Analytically tractable payoff distribution mechanisms, which lead to the realization of these solutions, are developed. This is the first time that subgame-consistent solutions for cooperative dynamic games with random horizon are presented.

Suggested Citation

  • D. W. K. Yeung & L. A. Petrosyan, 2011. "Subgame Consistent Cooperative Solution of Dynamic Games with Random Horizon," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 78-97, July.
  • Handle: RePEc:spr:joptap:v:150:y:2011:i:1:d:10.1007_s10957-011-9824-4
    DOI: 10.1007/s10957-011-9824-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9824-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9824-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. Krawczyk & M. Tidball, 2006. "A Discrete-Time Dynamic Game of Seasonal Water Allocation," Journal of Optimization Theory and Applications, Springer, vol. 128(2), pages 411-429, February.
    2. Nie, Pu-yan & Chen, Li-hua & Fukushima, Masao, 2006. "Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers," European Journal of Operational Research, Elsevier, vol. 169(1), pages 310-328, February.
    3. D. W. K. Yeung, 2007. "Dynamically Consistent Cooperative Solution in a Differential Game of Transboundary Industrial Pollution," Journal of Optimization Theory and Applications, Springer, vol. 134(1), pages 143-160, July.
    4. Basar, Tamer & Ho, Yu-Chi, 1974. "Informational properties of the Nash solutions of two stochastic nonzero-sum games," Journal of Economic Theory, Elsevier, vol. 7(4), pages 370-387, April.
    5. Engelbert J. Dockner & Kazuo Nishimura, 1999. "Transboundary Pollution in a Dynamic Game Model," The Japanese Economic Review, Japanese Economic Association, vol. 50(4), pages 443-456, December.
    6. Rubio, Santiago J. & Ulph, Alistair, 2007. "An infinite-horizon model of dynamic membership of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 54(3), pages 296-310, November.
    7. D. W. K. Yeung & L. A. Petrosyan, 2004. "Subgame Consistent Cooperative Solutions in Stochastic Differential Games," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 651-666, March.
    8. Prajit Dutta & Roy Radner, 2006. "Population growth and technological change in a global warming model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 251-270, October.
    9. Ehtamo, Harri & Hamalainen, Raimo P., 1993. "A cooperative incentive equilibrium for a resource management problem," Journal of Economic Dynamics and Control, Elsevier, vol. 17(4), pages 659-678, July.
    10. D. W. K. Yeung & L. A. Petrosyan, 2010. "Subgame Consistent Solutions for Cooperative Stochastic Dynamic Games," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 579-596, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ovanes Petrosian & Lihong Shi & Yin Li & Hongwei Gao, 2019. "Moving Information Horizon Approach for Dynamic Game Models," Mathematics, MDPI, vol. 7(12), pages 1-31, December.
    2. David Yeung & Ovanes Petrosian, 2017. "Infinite Horizon Dynamic Games: A New Approach via Information Updating," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-23, December.
    3. Elena M. Parilina & Georges Zaccour, 2017. "Node-Consistent Shapley Value for Games Played over Event Trees with Random Terminal Time," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 236-254, October.
    4. David W. K. Yeung & Leon A. Petrosyan, 2019. "Cooperative Dynamic Games with Control Lags," Dynamic Games and Applications, Springer, vol. 9(2), pages 550-567, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Yeung, 2014. "Dynamically consistent collaborative environmental management with production technique choices," Annals of Operations Research, Springer, vol. 220(1), pages 181-204, September.
    2. David W. K. Yeung & Leon A. Petrosyan, 2016. "A Cooperative Dynamic Environmental Game of Subgame Consistent Clean Technology Development," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-23, June.
    3. Rajani Singh & Agnieszka Wiszniewska-Matyszkiel, 2020. "A class of linear quadratic dynamic optimization problems with state dependent constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 325-355, April.
    4. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.
    5. Hassan Benchekroun & Amrita Ray Chaudhuri, 2015. "Cleaner Technologies and the Stability of International Environmental Agreements," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 17(6), pages 887-915, December.
    6. Ngo Long, 2011. "Dynamic Games in the Economics of Natural Resources: A Survey," Dynamic Games and Applications, Springer, vol. 1(1), pages 115-148, March.
    7. Li, Huiquan & Guo, Genlong, 2019. "A differential game analysis of multipollutant transboundary pollution in river basin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Shoude Li, 2014. "A Differential Game of Transboundary Industrial Pollution with Emission Permits Trading," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 642-659, November.
    9. Marrouch, W. & Ray Chaudhuri, A., 2011. "International Environmental Agreements in the Presence of Adaptation," Other publications TiSEM 247443ba-1022-47e0-9900-d, Tilburg University, School of Economics and Management.
    10. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
    11. Mason, Charles F. & Polasky, Stephen & Tarui, Nori, 2017. "Cooperation on climate-change mitigation," European Economic Review, Elsevier, vol. 99(C), pages 43-55.
    12. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    13. Günther, Michael & Hellmann, Tim, 2017. "International environmental agreements for local and global pollution," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 38-58.
    14. Vosooghi, Sareh & Caparrós, Alejandro, 2022. "Information disclosure and dynamic climate agreements: Shall the IPCC reveal it all?," European Economic Review, Elsevier, vol. 143(C).
    15. Dutta, Prajit K. & Radner, Roy, 2009. "A strategic analysis of global warming: Theory and some numbers," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 187-209, August.
    16. D. Yeung & L. Petrosyan, 2013. "Subgame Consistent Cooperative Provision of Public Goods," Dynamic Games and Applications, Springer, vol. 3(3), pages 419-442, September.
    17. David Yeung & Ovanes Petrosian, 2017. "Infinite Horizon Dynamic Games: A New Approach via Information Updating," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-23, December.
    18. Denis Kuzyutin & Nadezhda Smirnova, 2020. "Subgame Consistent Cooperative Behavior in an Extensive form Game with Chance Moves," Mathematics, MDPI, vol. 8(7), pages 1-20, July.
    19. Johan Eyckmans & Michael Finus, 2006. "New roads to international environmental agreements: the case of global warming," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 391-414, December.
    20. Pierre Bernhard & Marc Deschamps, 2017. "On Dynamic Games with Randomly Arriving Players," Dynamic Games and Applications, Springer, vol. 7(3), pages 360-385, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:150:y:2011:i:1:d:10.1007_s10957-011-9824-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.