IDEAS home Printed from https://ideas.repec.org/a/spr/jecstr/v8y2019i1d10.1186_s40008-019-0168-9.html
   My bibliography  Save this article

Energy demand and factor substitution in Vietnam: evidence from two recent enterprise surveys

Author

Listed:
  • Phu Viet Le

    (Fulbright University Vietnam)

Abstract

Vietnam’s economy is one of the most energy-intensive economies in the world, facilitated by long-standing government policies indirectly subsidizing energy prices through various state-owned enterprises in the energy sector. A consequence of this is that firms are using too much energy in production. This raises a crucial issue as to whether Vietnam can continue its development trajectory in the new era with rising energy prices and increased awareness of the use of fossil fuels and environmental pollution. In this context, understanding energy use patterns and firms’ behaviors regarding cheap energy prices is critical to forming appropriate energy policies and management practices. Using large-scale firm-level data, we have found explicit evidence of firms’ substitution of energy for capital inputs. This effect is present in both the short term and long term and in many energy-intensive industries. These results indicate that there is substantial benefit in appropriate pricing of primary energy and electricity, while also providing credit incentives for capital investment in more energy-efficient equipment. Reducing the rate of growth of energy demand, averaging approximately 10% annually, will have significant macroeconomic impacts. A quicker transition to less energy-intensive economic growth will also help to protect both the environment and public health.

Suggested Citation

  • Phu Viet Le, 2019. "Energy demand and factor substitution in Vietnam: evidence from two recent enterprise surveys," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-17, December.
  • Handle: RePEc:spr:jecstr:v:8:y:2019:i:1:d:10.1186_s40008-019-0168-9
    DOI: 10.1186/s40008-019-0168-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40008-019-0168-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40008-019-0168-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    2. Thompson, Henry, 2006. "The applied theory of energy substitution in production," Energy Economics, Elsevier, vol. 28(4), pages 410-425, July.
    3. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    4. Mark M. Pitt, 1985. "Estimating Industrial Energy Demand with Firm-Level Data: The Case of Indonesia," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 25-39.
    5. Alan D. Woodland, 1993. "A Micro-Econometric Analysis of the Industrial Demand for Energy in NSW," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 57-90.
    6. Tang, Chor Foon & Tan, Bee Wah & Ozturk, Ilhan, 2016. "Energy consumption and economic growth in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1506-1514.
    7. Chung, Jae Wan, 1987. "On the Estimation of Factor Substitution in the Translog Model," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 409-417, August.
    8. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    9. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    10. Dargay, Joyce M, 1983. " The Demand for Energy in Swedish Manufacturing Industries," Scandinavian Journal of Economics, Wiley Blackwell, vol. 85(1), pages 37-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edwin Bernard F. Lisaba & Neil Stephen A. Lopez, 2021. "Spatiotemporal Comparison of Drivers to CO 2 Emissions in ASEAN: A Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    2. Julian Augusto Casas Herrera & Jhancarlos Gutiérrez-Ayala, 2021. "Territorial Analysis of the Elasticities of Substitution of Production Factors in the Colombian Manufacturing Industry (1992–2018)," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 94, pages 223-255, Enero-Jun.
    3. Minh Nguyen Dat & Kien Duong Trung & Phap Vu Minh & Chau Dinh Van & Quynh T. Tran & Trung Nguyen Ngoc, 2023. "Assessment of Energy Efficiency Using an Energy Monitoring System: A Case Study of a Major Energy-Consuming Enterprise in Vietnam," Energies, MDPI, vol. 16(13), pages 1-15, July.
    4. Phuong V. Nguyen & Khoa T. Tran, 2020. "Explicating energy saving intention from the prospect of small medium enterprises," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 716-734, December.
    5. Vo, Duc Hong & Vo, Long Hai & Ho, Chi Minh, 2022. "Regional convergence of nonrenewable energy consumption in Vietnam," Energy Policy, Elsevier, vol. 169(C).
    6. Do, Thang Nam & Burke, Paul J. & Baldwin, Kenneth G.H. & Nguyen, Chinh The, 2020. "Underlying drivers and barriers for solar photovoltaics diffusion: The case of Vietnam," Energy Policy, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
    2. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    3. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    4. Bjorner, Thomas Bue & Togeby, Mikael & Jensen, Henrik Holm, 2001. "Industrial companies' demand for electricity: evidence from a micropanel," Energy Economics, Elsevier, vol. 23(5), pages 595-617, September.
    5. Manish Gupta & Ramprasad Sengupta, 2013. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Review of Market Integration, India Development Foundation, vol. 5(3), pages 363-388, December.
    6. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    7. Bardazzi, Rossella & Oropallo, Filippo & Pazienza, Maria Grazia, 2015. "Do manufacturing firms react to energy prices? Evidence from Italy," Energy Economics, Elsevier, vol. 49(C), pages 168-181.
    8. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    9. Koschel, Henrike, 2000. "Substitution elasticities between capital, labour, material, electricity and fossil fuels in German producing and service sectors," ZEW Discussion Papers 00-31, ZEW - Leibniz Centre for European Economic Research.
    10. Imen Gam & Jaleleddine Ben Rejeb, 2012. "How Can We Assess the Relation Between Equipment, Price and Electricity Demand in Tunisia?," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 159-166.
    11. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    12. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    13. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
    14. Jorge Ibarra Salazar & Francisco García Pérez, 2016. "Las demandas de factores productivos en la industria maquiladora," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 31(2), pages 265-303.
    15. Patrick Artus & Pierre-Alain Muet & Agnès Picard & Claude Peyroux, 1982. "Politique conjoncturelle et investissement dans les années 70," Revue de l'OFCE, Programme National Persée, vol. 1(1), pages 61-90.
    16. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.
    17. Serletis, Apostolos & Xu, Libo, 2022. "Interfuel substitution: A copula approach," Journal of Commodity Markets, Elsevier, vol. 28(C).
    18. Antonia Diaz & Luis A. Puch & Maria D. Guillo, 2004. "Costly Capital Reallocation and Energy Use," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 7(2), pages 494-518, April.
    19. Medina, J. & Vega-Cervera, J. A., 2001. "Energy and the non-energy inputs substitution: evidence for Italy, Portugal and Spain," Applied Energy, Elsevier, vol. 68(2), pages 203-214, February.
    20. Díaz, Antonia & Puch, Luis A., 2013. "A theory of vintage capital investment and energy use," UC3M Working papers. Economics we1320, Universidad Carlos III de Madrid. Departamento de Economía.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecstr:v:8:y:2019:i:1:d:10.1186_s40008-019-0168-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.