IDEAS home Printed from https://ideas.repec.org/a/spr/italej/v3y2017i3d10.1007_s40797-017-0049-z.html
   My bibliography  Save this article

Innovation Dynamics and Industry Structure Under Different Technological Spaces

Author

Listed:
  • Alessandro Caiani

    (Università Politecnica delle Marche)

Abstract

The paper presents an Agent-Based model to analyze the reciprocal influence between industry structure and industry innovation patterns. This topic was originally investigated through the seminal models of Schumpeterian competition developed by Nelson and Winter (Am Econ Rev 67:271–276, 1977, An Evolutionary Theory of Economic Change. Harvard University Press, Cambridge, 1982), Winter (J Econ Behav Organ 5:287–320, 1984), and Nelson (National innovation systems. A comparative analysis. Oxford University Press, Oxford, 1993). However, the knowledge accumulation process depicted in these models was extremely simplified. In particular, they did not provide any insight about the direction of firms’ technological advancement, within the range of possible alternative technological paths. This aspect is instead of topical importance for the generation of sectoral spillovers affecting the diffusion of innovations and the evolution of the industry structure. Our model aims at filling this gap by amending the framework proposed in Nelson and Winter (An Evolutionary Theory of Economic Change. Harvard University Press, Cambridge, 1982) so to to account for different characterizations of the ‘technology structure’ of the industry, and their possible influence on the process of Schumpeterian selection. More precisely, technology is represented as a directed network where each node constitutes a batch of technological skills to be learned by firms. The model shows that firms’ ability to imitate competitors generates spillover effects whose relevance depends upon the topological structure of Technology Network and firms’ specialization trajectories. In turn, by influencing the process of Schumpeterian competition, these spillovers exert a fundamental impact on both the industry innovative performance and the evolution of the industry structure.

Suggested Citation

  • Alessandro Caiani, 2017. "Innovation Dynamics and Industry Structure Under Different Technological Spaces," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 3(3), pages 307-341, November.
  • Handle: RePEc:spr:italej:v:3:y:2017:i:3:d:10.1007_s40797-017-0049-z
    DOI: 10.1007/s40797-017-0049-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40797-017-0049-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40797-017-0049-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackie Krafft & Francesco Quatraro & Pier Paolo Saviotti, 2011. "The knowledge-base evolution in biotechnology: a social network analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(5), pages 445-475.
    2. Malerba, Franco, 1992. "Learning by Firms and Incremental Technical Change," Economic Journal, Royal Economic Society, vol. 102(413), pages 845-859, July.
    3. Franco Malerba & Richard Nelson & Luigi Orsenigo & Sidney Winter, 2008. "Vertical integration and disintegration of computer firms: a history-friendly model of the coevolution of the computer and semiconductor industries," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(2), pages 197-231, April.
    4. Cristiano Antonelli, 2009. "The economics of innovation: from the classical legacies to the economics of complexity," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(7), pages 611-646.
    5. Franco Malerba, 2005. "Sectoral systems of innovation: a framework for linking innovation to the knowledge base, structure and dynamics of sectors," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(1-2), pages 63-82.
    6. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2009. "Mapping technological trajectories as patent citation networks. An application to data communication standards," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(4), pages 311-336.
    7. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    8. Winter, Sidney G., 1984. "Schumpeterian competition in alternative technological regimes," Journal of Economic Behavior & Organization, Elsevier, vol. 5(3-4), pages 287-320.
    9. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    10. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    11. onder Nomaler & Bart Verspagen, 2008. "Knowledge Flows, Patent Citations and the Impact of Science on Technology," Economic Systems Research, Taylor & Francis Journals, vol. 20(4), pages 339-366.
    12. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    13. Carlota Perez, 2009. "The double bubble at the turn of the century: technological roots and structural implications," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 33(4), pages 779-805, July.
    14. Hohnisch, Martin & Pittnauer, Sabine & Stauffer, Dietrich, 2006. "A Percolation-Based Model Explaining Delayed Take-Off in New-Product Diffusion," Bonn Econ Discussion Papers 9/2006, University of Bonn, Bonn Graduate School of Economics (BGSE).
    15. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    16. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    17. Nelson, Richard R & Winter, Sidney G, 1977. "Simulation of Schumpeterian Competition," American Economic Review, American Economic Association, vol. 67(1), pages 271-276, February.
    18. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    19. G. Dosi & M. Egidi, 2000. "Substantive and Procedural Uncertainty: An Exploration of Economic Behaviours in Changing Environments," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 5, pages 165-188, Edward Elgar Publishing.
    20. Breschi, Stefano & Malerba, Franco & Orsenigo, Luigi, 2000. "Technological Regimes and Schumpeterian Patterns of Innovation," Economic Journal, Royal Economic Society, vol. 110(463), pages 388-410, April.
    21. Simona Cantono & Gerald Silverberg, 2008. "A percolation model of eco-innovation diffusion: the relationship between diffusion, learning economies and subsidies," MERIT Working Papers 2008-025, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    22. Maurice Cassier & Dominique Foray, 2002. "Public Knowledge, Private Property and the Economics of High-tech Consortia," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 11(2), pages 123-132.
    23. Franco Malerba & Luigi Orsenigo, 2002. "Innovation and market structure in the dynamics of the pharmaceutical industry and biotechnology: towards a history-friendly model," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(4), pages 667-703, August.
    24. Silverberg, Gerald & Verspagen, Bart, 2005. "A percolation model of innovation in complex technology spaces," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 225-244, January.
    25. Bottazzi, Giulio & Dosi, Giovanni & Rocchetti, Gaia, 2001. "Modes of Knowledge Accumulation, Entry Regimes and Patterns of Industrial Evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 10(3), pages 609-638, September.
    26. Gerald Silverberg & Giovanni Dosi & Luigi Orsenigo, 2000. "Innovation, Diversity and Diffusion: A Self-Organisation Model," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 14, pages 410-432, Edward Elgar Publishing.
    27. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    28. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    29. Dawid, Herbert, 2006. "Agent-based Models of Innovation and Technological Change," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 25, pages 1235-1272, Elsevier.
    30. Piergiuseppe Morone & Richard Taylor, 2010. "Knowledge Diffusion and Innovation," Books, Edward Elgar Publishing, number 13143.
    31. Malerba, Franco, et al, 1999. "'History-Friendly' Models of Industry Evolution: The Computer Industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 8(1), pages 3-40, March.
    32. Esben Sloth Andersen & Anne K. Jensen & Lars Madsen & Martin Jørgensen, 1996. "The Nelson and Winter Models RevisitedPrototypes for Computer-Based Reconstruction of Schumpeterian Competition," DRUID Working Papers 96-5, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
    33. Francesco Schettino, 2007. "Us Patent Citations Data And Industrial Knowledge Spillovers," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 16(8), pages 595-633.
    34. Franco Malerba & Uwe Cantner, 2006. "Innovation, industrial dynamics and structural transformation: Schumpeterian legacies," Journal of Evolutionary Economics, Springer, vol. 16(1), pages 1-2, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yi & Cheng, Jinhua & Zhang, Yijun & Dai, Tao & Huang, Jianbai, 2021. "Direct and indirect effects of heterogeneous technical change on metal consumption intensity: Evidence from G7 and BRICS countries," Resources Policy, Elsevier, vol. 71(C).
    2. Aistleitner, Matthias & Gräbner, Claudius & Hornykewycz, Anna, 2021. "Theory and empirics of capability accumulation: Implications for macroeconomic modeling," Research Policy, Elsevier, vol. 50(6).
    3. Alessandro Caiani & Alberto Russo & Mauro Gallegati, 2019. "Does inequality hamper innovation and growth? An AB-SFC analysis," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 177-228, March.
    4. Claudius Gräbner & Anna Hornykewycz, 2022. "Capability accumulation and product innovation: an agent-based perspective," Journal of Evolutionary Economics, Springer, vol. 32(1), pages 87-121, January.
    5. Terranova, Roberta & Turco, Enrico M., 2022. "Concentration, stagnation and inequality: An agent-based approach," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 569-595.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    2. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    3. Alessandro Caiani, 2012. "An Agent-Based Model of Schumpeterian Competition," Quaderni di Dipartimento 176, University of Pavia, Department of Economics and Quantitative Methods.
    4. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    5. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    6. Gianluca Capone & Franco Malerba & Richard R. Nelson & Luigi Orsenigo & Sidney G. Winter, 2019. "History friendly models: retrospective and future perspectives," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 1-23, March.
    7. Giorgio Fagiolo & Paul Windrum & Alessio Moneta, 2006. "Empirical Validation of Agent Based Models: A Critical Survey," LEM Papers Series 2006/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    9. Christian Garavaglia & Franco Malerba & Luigi Orsenigo & Michele Pezzoni, 2013. "Technological Regimes and Demand Structure in the Evolution of the Pharmaceutical Industry," Economic Complexity and Evolution, in: Andreas Pyka & Esben Sloth Andersen (ed.), Long Term Economic Development, edition 127, pages 61-94, Springer.
    10. Malerba, Franco, 2007. "Innovation and the dynamics and evolution of industries: Progress and challenges," International Journal of Industrial Organization, Elsevier, vol. 25(4), pages 675-699, August.
    11. Garavaglia Christian & Malerba Franco & Orsenigo Luigi & Pezzoni Michele, 2014. "Innovation and Market Structure in Pharmaceuticals: An Econometric Analysis on Simulated Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(2-3), pages 274-298, April.
    12. Dosi, Giovanni & Palagi, Elisa & Roventini, Andrea & Russo, Emanuele, 2023. "Do patents really foster innovation in the pharmaceutical sector? Results from an evolutionary, agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 564-589.
    13. Alp Eren Yurtseven & Mehmet Teoman Pamukçu, 2022. "Innovation patterns in firms and intra-industry heterogeneity empirical evidence from Turkey," Evolutionary and Institutional Economics Review, Springer, vol. 19(2), pages 645-679, September.
    14. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    15. Triulzi, G., 2014. "Technology life cycle and specialization patterns of latecomer countries: The case of the semiconductor industry," MERIT Working Papers 2014-012, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    16. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    17. Hommes, Cars & Zeppini, Paolo, 2014. "Innovate or Imitate? Behavioural technological change," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 308-324.
    18. P. G. J. Persoon & R. N. A. Bekkers & F. Alkemade, 2020. "How cumulative is technological knowledge?," Papers 2012.00095, arXiv.org, revised May 2021.
    19. Carreira, Carlos & Teixeira, Paulino, 2011. "Entry and exit as a source of aggregate productivity growth in two alternative technological regimes," Structural Change and Economic Dynamics, Elsevier, vol. 22(2), pages 135-150, June.
    20. Chao Bi & Jingjing Zeng & Wanli Zhang & Yonglin Wen, 2020. "Modelling the Coevolution of the Fuel Ethanol Industry, Technology System, and Market System in China: A History-Friendly Model," Energies, MDPI, vol. 13(5), pages 1-26, February.

    More about this item

    Keywords

    Schumpeterian competition; Innovation; Evolutionary economics; Agent-Based models; Networks;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • L10 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:italej:v:3:y:2017:i:3:d:10.1007_s40797-017-0049-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.