IDEAS home Printed from https://ideas.repec.org/a/taf/ecsysr/v20y2008i4p339-366.html
   My bibliography  Save this article

Knowledge Flows, Patent Citations and the Impact of Science on Technology

Author

Listed:
  • onder Nomaler
  • Bart Verspagen

Abstract

Technological innovation depends on knowledge developed by scientific research. The number of citations made in patents to the scientific literature has been suggested as an indicator of this process of transfer of knowledge from science to technology. We provide an intersectoral insight into this indicator, by breaking down patent citations into a sector-to-sector matrix of knowledge flows. We then propose a method to analyze this matrix and construct various indicators of science intensity of sectors, and the pervasiveness of knowledge flows. Our results indicate that the traditional measure of the number of citations to science literature per patent captures important aspects of intersectoral knowledge flows, but that other aspects are not captured. In particular, we show that high science intensity implies that sectors are net suppliers of knowledge in the economic sector, but that science intensity does not say much about pervasiveness of either knowledge use or knowledge supply by sectors. We argue that these results are related to the specific and specialized nature of knowledge.

Suggested Citation

  • onder Nomaler & Bart Verspagen, 2008. "Knowledge Flows, Patent Citations and the Impact of Science on Technology," Economic Systems Research, Taylor & Francis Journals, vol. 20(4), pages 339-366.
  • Handle: RePEc:taf:ecsysr:v:20:y:2008:i:4:p:339-366
    DOI: 10.1080/09535310802551315
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09535310802551315
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09535310802551315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    2. Daniel Johnson & Robert Evenson, 1997. "Innovation and Invention in Canada," Economic Systems Research, Taylor & Francis Journals, vol. 9(2), pages 177-192.
    3. Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
    4. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    5. Jan Oosterhaven & Dirk Stelder, 2002. "Net Multipliers Avoid Exaggerating Impacts: With A Bi–Regional Illustration for the Dutch Transportation Sector," Journal of Regional Science, Wiley Blackwell, vol. 42(3), pages 533-543, August.
    6. Erik Dietzenbacher, 2005. "More on multipliers," Journal of Regional Science, Wiley Blackwell, vol. 45(2), pages 421-426, May.
    7. Hicks, Diana & Breitzman, Tony & Olivastro, Dominic & Hamilton, Kimberly, 2001. "The changing composition of innovative activity in the US -- a portrait based on patent analysis," Research Policy, Elsevier, vol. 30(4), pages 681-703, April.
    8. Schumpeter Tamada & Yusuke Naito & Fumio Kodama & Kiminori Gemba & Jun Suzuki, 2006. "Significant difference of dependence upon scientific knowledge among different technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 289-302, August.
    9. J. S·nchez-ChÛliz & R. Duarte, 2003. "Analysing pollution by way of vertically integrated coefficients, with an application to the water sector in Aragon," Cambridge Journal of Economics, Oxford University Press, vol. 27(3), pages 433-448, May.
    10. Dosi, Giovanni & Llerena, Patrick & Labini, Mauro Sylos, 2006. "The relationships between science, technologies and their industrial exploitation: An illustration through the myths and realities of the so-called `European Paradox'," Research Policy, Elsevier, vol. 35(10), pages 1450-1464, December.
    11. Maurseth, Per Botolf & Verspagen, Bart, 2002. " Knowledge Spillovers in Europe: A Patent Citations Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 531-545, December.
    12. Martin Meyer, 2002. "Tracing knowledge flows in innovation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(2), pages 193-212, June.
    13. Loet Leydesdorff, 2004. "The university–industry knowledge relationship: Analyzing patents and the science base of technologies," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 55(11), pages 991-1001, September.
    14. Per Botolf Maurseth & Bart Verspagen, 2002. "Knowledge Spillovers in Europe: A Patent Citations Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 531-545, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suma Athreye & Martha Prevezer, 2008. "R&D offshoring and the domestic science base in India and China," Working Papers 26, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    2. Julie Callaert & Joris Grouwels & Bart Looy, 2012. "Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 383-398, May.
    3. Tom Broekel & Matthias Brachert, 2015. "The structure and evolution of inter-sectoral technological complementarity in R&D in Germany from 1990 to 2011," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 755-785, September.
    4. Ali Gazni & Zahra Ghaseminik, 2019. "The increasing dominance of science in the economy: Which nations are successful?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1411-1426, September.
    5. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    6. Taalbi, Josef, 2020. "Evolution and structure of technological systems - An innovation output network," Research Policy, Elsevier, vol. 49(8).
    7. José Bestier Padilla Bejarano & Jhon Wilder Zartha Sossa & Carlos Ocampo-López & Margarita Ramírez-Carmona, 2023. "University Technology Transfer from a Knowledge-Flow Approach—Systematic Literature Review," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    8. Ruimin Ma & Erjia Yan, 2016. "Uncovering inter-specialty knowledge communication using author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 839-854, November.
    9. Maria Abreu & Pelin Demirel & Vadim Grinevich & Mine Karataş-Özkan, 2016. "Entrepreneurial practices in research-intensive and teaching-led universities," Small Business Economics, Springer, vol. 47(3), pages 695-717, October.
    10. Adams, Pamela & Fontana, Roberto & Malerba, Franco, 2013. "The magnitude of innovation by demand in a sectoral system: The role of industrial users in semiconductors," Research Policy, Elsevier, vol. 42(1), pages 1-14.
    11. Mei Hsiu-Ching Ho & John S. Liu, 2013. "The motivations for knowledge transfer across borders: the diffusion of data envelopment analysis (DEA) methodology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 397-421, January.
    12. Francisco Mas-Verdú & Anthony Wensley & Martin Alba & José García Álvarez-Coque, 2011. "How much does KIBS contribute to the generation and diffusion of innovation?," Service Business, Springer;Pan-Pacific Business Association, vol. 5(3), pages 195-212, September.
    13. Fabrizio Fusillo & Sandro Montresor & Giuseppe Vittucci Marzetti, 2021. "The global network of embodied R&D flows," Discussion Paper series in Regional Science & Economic Geography 2021-05, Gran Sasso Science Institute, Social Sciences, revised Apr 2021.
    14. Alessandro Caiani, 2017. "Innovation Dynamics and Industry Structure Under Different Technological Spaces," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 3(3), pages 307-341, November.
    15. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    16. Taalbi, Josef, 2015. "Development Blocks in Innovation Networks. The Swedish Manufacturing Industry, 1970-2007," MPRA Paper 64549, University Library of Munich, Germany, revised 23 May 2015.
    17. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    18. Josef Taalbi, 2017. "Development blocks in innovation networks," Journal of Evolutionary Economics, Springer, vol. 27(3), pages 461-501, July.
    19. Talya Ponchek, 2016. "To Collaborate or Not to Collaborate? A Study of the Value of Innovation from a Sectoral Perspective," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 7(1), pages 43-79, March.
    20. Vadim Grinevich, 2013. "Region-specific productivity competitiveness and the universityindustry interface," Chapters, in: Tüzin Baycan (ed.), Knowledge Commercialization and Valorization in Regional Economic Development, chapter 9, pages 184-208, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azagra-Caro,Joaquín M. & Barberá-Tomás,David & Edwards-Schachter,Mónica, 2015. "The impact of one of the most highly cited university patents: formalisation and localization," INGENIO (CSIC-UPV) Working Paper Series 201502, INGENIO (CSIC-UPV), revised 03 Jan 2017.
    2. MOTOHASHI Kazuyuki & ZHAO Qiuhan, 2023. "University as a Knowledge Source of Innovation: A spatial analysis of the impact on local high-tech startup creation," Discussion papers 23027, Research Institute of Economy, Trade and Industry (RIETI).
    3. Feldman, Maryann P. & Kogler, Dieter F., 2010. "Stylized Facts in the Geography of Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 381-410, Elsevier.
    4. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    5. Autant-Bernard, Corinne & Fadairo, Muriel & Massard, Nadine, 2013. "Knowledge diffusion and innovation policies within the European regions: Challenges based on recent empirical evidence," Research Policy, Elsevier, vol. 42(1), pages 196-210.
    6. Jung Won Sonn & Michael Storper, 2008. "The Increasing Importance of Geographical Proximity in Knowledge Production: An Analysis of US Patent Citations, 1975–1997," Environment and Planning A, , vol. 40(5), pages 1020-1039, May.
    7. Maryann Feldman & Dieter Kogler & David Rigby, 2013. "rKnowledge: The Spatial Diffusion of rDNA Methods," Papers in Evolutionary Economic Geography (PEEG) 1311, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2013.
    8. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    9. Bergeaud, Antonin & Guillouzouic, Arthur, 2023. "Proximity of firms to scientific production," LSE Research Online Documents on Economics 121289, London School of Economics and Political Science, LSE Library.
    10. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Di Costa, Flavia, 2020. "The role of geographical proximity in knowledge diffusion, measured by citations to scientific literature," Journal of Informetrics, Elsevier, vol. 14(1).
    11. Ren� Belderbos & Dieter Somers, 2015. "Do Technology Leaders Deter Inward R&D Investments? Evidence from Regional R&D Location Decisions in Europe," Regional Studies, Taylor & Francis Journals, vol. 49(11), pages 1805-1821, November.
    12. Davide Vurchio & Anna Giunta, 2021. "The impact of the Italian Space Agency on scientific knowledge: Evidence from academic publications," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 92(3), pages 511-529, September.
    13. Lu, Louis Y.Y. & Liu, John S., 2016. "A novel approach to identify the major research themes and development trajectory: The case of patenting research," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 71-82.
    14. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Di Costa, Flavia, 2021. "On the relation between the degree of internationalization of cited and citing publications: A field level analysis, including and excluding self-citations," Journal of Informetrics, Elsevier, vol. 15(1).
    15. Suma Athreye & Martha Prevezer, 2008. "R&D offshoring and the domestic science base in India and China," Working Papers 26, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    16. Rajneesh Narula & Grazia D. Santangelo, 2007. "Location and R&D Alliances in the European ICT Industry," DRUID Working Papers 07-05, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
    17. Per Botolf Maurseth, 2005. "Lovely but dangerous: The impact of patent citations on patent renewal," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 351-374.
    18. Cassiman, Bruno & Veugelers, Reinhilde & Zuniga, Pluvia, 2009. "Diversity of science linkages and innovation performance: some empirical evidence from Flemish firms," Economics Discussion Papers 2009-30, Kiel Institute for the World Economy (IfW Kiel).
    19. Lee Branstetter & Kwon Hyeog Ug, 2004. "The Restructuring Of Japanese Research And Development: The Increasing Impact Of Science On Japanese R&D," Discussion papers 04021, Research Institute of Economy, Trade and Industry (RIETI).
    20. Luigi Aldieri & Michele Cincera, 2009. "Geographic and technological R&D spillovers within the triad: micro evidence from US patents," The Journal of Technology Transfer, Springer, vol. 34(2), pages 196-211, April.

    More about this item

    Keywords

    Knowledge input-output analysis; knowledge flow matrices; science-to-technology transfer;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ecsysr:v:20:y:2008:i:4:p:339-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CESR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.