IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v22y2012i4p677-709.html
   My bibliography  Save this article

Technological regimes and demand structure in the evolution of the pharmaceutical industry

Author

Listed:
  • Christian Garavaglia
  • Franco Malerba
  • Luigi Orsenigo
  • Michele Pezzoni

Abstract

This paper examines how the nature of the technological regime governing innovative activities and the structure of demand interact in determining market structure, with specific reference to the pharmaceutical industry. The key question concerns the observation that—despite high degrees of R&D and marketing-intensity—concentration has been consistently low during the whole evolution of the industry. Standard explanations of this phenomenon refer to the random nature of the innovative process, the patterns of imitation, and the fragmented nature of the market into multiple, independent submarkets. We delve deeper into this issue by using an improved version of our previous “history-friendly” model of the evolution of pharmaceuticals. Thus, we explore the way in which changes in the technological regime and/or in the structure of demand may generate or not substantially higher degrees of concentration. The main results are that, while technological regimes remain fundamental determinants of the patterns of innovation, the demand structure plays a crucial role in preventing the emergence of concentration through a partially endogenous process of discovery of new submarkets. However, it is not simply market fragmentation as such that produces this result, but rather the entity of the “prize” that innovators can gain relative to the overall size of the market. Further, the model shows that emerging industry leaders are innovative early entrants in large submarkets. Copyright Springer-Verlag 2012

Suggested Citation

  • Christian Garavaglia & Franco Malerba & Luigi Orsenigo & Michele Pezzoni, 2012. "Technological regimes and demand structure in the evolution of the pharmaceutical industry," Journal of Evolutionary Economics, Springer, vol. 22(4), pages 677-709, September.
  • Handle: RePEc:spr:joevec:v:22:y:2012:i:4:p:677-709
    DOI: 10.1007/s00191-012-0285-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00191-012-0285-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00191-012-0285-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Winter, Sidney G., 1984. "Schumpeterian competition in alternative technological regimes," Journal of Economic Behavior & Organization, Elsevier, vol. 5(3-4), pages 287-320.
    2. Scherer, F.M., 2000. "The pharmaceutical industry," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 25, pages 1297-1336, Elsevier.
    3. Franco Malerba & Richard Nelson & Luigi Orsenigo & Sidney Winter, 2007. "Demand, innovation, and the dynamics of market structure: The role of experimental users and diverse preferences," Journal of Evolutionary Economics, Springer, vol. 17(4), pages 371-399, August.
    4. Bottazzi, Giulio & Dosi, Giovanni & Lippi, Marco & Pammolli, Fabio & Riccaboni, Massimo, 2001. "Innovation and corporate growth in the evolution of the drug industry," International Journal of Industrial Organization, Elsevier, vol. 19(7), pages 1161-1187, July.
    5. Paul Windrum & Chris Birchenhall, 2005. "Structural change in the presence of network externalities: a co-evolutionary model of technological successions," Journal of Evolutionary Economics, Springer, vol. 15(2), pages 123-148, January.
    6. Breschi, Stefano & Malerba, Franco & Orsenigo, Luigi, 2000. "Technological Regimes and Schumpeterian Patterns of Innovation," Economic Journal, Royal Economic Society, vol. 110(463), pages 388-410, April.
    7. Klepper, Steven, 1996. "Entry, Exit, Growth, and Innovation over the Product Life Cycle," American Economic Review, American Economic Association, vol. 86(3), pages 562-583, June.
    8. Steven Klepper & Peter Thompson, 2006. "Submarkets and the evolution of market structure," RAND Journal of Economics, RAND Corporation, vol. 37(4), pages 861-886, December.
    9. Klepper, Steven, 1997. "Industry Life Cycles," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(1), pages 145-181.
    10. Matraves, Catherine, 1999. "Market Structure, R&D and Advertising in the Pharmaceutical Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 47(2), pages 169-194, June.
    11. Windrum, Paul & Birchenhall, Chris, 1998. "Is product life cycle theory a special case? Dominant designs and the emergence of market niches through coevolutionary-learning," Structural Change and Economic Dynamics, Elsevier, vol. 9(1), pages 109-134, March.
    12. Mowery,David C. & Nelson,Richard R. (ed.), 1999. "Sources of Industrial Leadership," Cambridge Books, Cambridge University Press, number 9780521645201.
    13. Ron Adner & Daniel Levinthal, 2001. "Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation," Management Science, INFORMS, vol. 47(5), pages 611-628, May.
    14. Malerba, Franco, et al, 1999. "'History-Friendly' Models of Industry Evolution: The Computer Industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 8(1), pages 3-40, March.
    15. Franco Malerba & Richard Nelson & Luigi Orsenigo & Sidney Winter, 2008. "Vertical integration and disintegration of computer firms: a history-friendly model of the coevolution of the computer and semiconductor industries," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(2), pages 197-231, April.
    16. Guido Buenstorf & Steven Klepper, 2010. "Submarket dynamics and innovation: the case of the US tire industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(5), pages 1563-1587, October.
    17. Comanor, William S, 1986. "The Political Economy of the Pharmaceutical Industry," Journal of Economic Literature, American Economic Association, vol. 24(3), pages 1178-1217, September.
    18. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    19. Catherine Matraves, 1999. "Market Structure, R&D and Advertising in the Pharmaceutical Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 47(2), pages 169-194, June.
    20. Franco Malerba & Luigi Orsenigo, 2002. "Innovation and market structure in the dynamics of the pharmaceutical industry and biotechnology: towards a history-friendly model," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(4), pages 667-703, August.
    21. Gambardella,Alfonso, 1995. "Science and Innovation," Cambridge Books, Cambridge University Press, number 9780521451185.
    22. Steven Klepper & Peter Thompson, 2006. "Submarkets and the evolution of market structure," RAND Journal of Economics, The RAND Corporation, vol. 37(4), pages 861-886, December.
    23. Christian Garavaglia & Franco Malerba & Luigi Orsenigo & Michele Pezzoni, 2010. "A History-Friendly Model of the Evolution of the Pharmaceutical Industry: Technological Regimes and Demand Structure," KITeS Working Papers 036, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Nov 2010.
    24. Pier P. Saviotti, 1996. "Technological Evolution, Variety and the Economy," Books, Edward Elgar Publishing, number 727.
    25. Jean-Michel Dalle, 1997. "Heterogeneity vs. externalities in technological competition: A tale of possible technological landscapes," Journal of Evolutionary Economics, Springer, vol. 7(4), pages 395-413.
    26. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    27. A. J. Culyer & J. P. Newhouse (ed.), 2000. "Handbook of Health Economics," Handbook of Health Economics, Elsevier, edition 1, volume 1, number 1.
    28. DiMasi, Joseph A. & Hansen, Ronald W. & Grabowski, Henry G., 2003. "The price of innovation: new estimates of drug development costs," Journal of Health Economics, Elsevier, vol. 22(2), pages 151-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garavaglia Christian & Malerba Franco & Orsenigo Luigi & Pezzoni Michele, 2014. "Innovation and Market Structure in Pharmaceuticals: An Econometric Analysis on Simulated Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(2-3), pages 274-298, April.
    2. R. Fontana & L. Zirulia, 2015. "then came Cisco, and the rest is history : a history friendly model of the Local Area Networking industry," Working Papers wp993, Dipartimento Scienze Economiche, Universita' di Bologna.
    3. Beniamino Callegari & Christophe Feder, 2022. "The long-term economic effects of pandemics: toward an evolutionary approach [Epidemics and trust: the case of the Spanish flu]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(3), pages 715-735.
    4. Thakur-Wernz, Pooja & Bruyaka, Olga & Contractor, Farok, 2022. "Sourcing portfolio diversity in new product development: Antecedents and performance implications," Journal of Business Research, Elsevier, vol. 150(C), pages 179-193.
    5. Peili Yu & Junguo Shi & Bert M. Sadowski & Önder Nomaler, 2020. "Catching Up in the Face of Technological Discontinuity: Exploring the Role of Demand Structure and Technological Regimes in the Transition from 2G to 3G in China," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 815-841, July.
    6. Roberto Fontana & Lorenzo Zirulia, 2015. "“…then came Cisco, and the rest is history”: a ‘history friendly’ model of the Local Area Networking industry," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 875-899, November.
    7. Pierre Barbaroux & Victor Santos Paulino, 2022. "Why do motives matter? A demand-based view of the dynamics of a complex products and systems (CoPS) industry," Journal of Evolutionary Economics, Springer, vol. 32(4), pages 1175-1204, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garavaglia Christian & Malerba Franco & Orsenigo Luigi & Pezzoni Michele, 2014. "Innovation and Market Structure in Pharmaceuticals: An Econometric Analysis on Simulated Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(2-3), pages 274-298, April.
    2. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    3. Roberto Fontana & Lorenzo Zirulia, 2015. "“…then came Cisco, and the rest is history”: a ‘history friendly’ model of the Local Area Networking industry," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 875-899, November.
    4. Malerba, Franco, 2007. "Innovation and the dynamics and evolution of industries: Progress and challenges," International Journal of Industrial Organization, Elsevier, vol. 25(4), pages 675-699, August.
    5. Lalit Manral, 2015. "The demand-side dynamics of entrant heterogeneity," Journal of Evolutionary Economics, Springer, vol. 25(2), pages 401-445, April.
    6. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    7. Marengo, Luigi & Valente, Marco, 2010. "Industry dynamics in complex product spaces: An evolutionary model," Structural Change and Economic Dynamics, Elsevier, vol. 21(1), pages 5-16, March.
    8. Franco Malerba, 2006. "Innovation, Industrial Dynamics and Industry Evolution: Progress and the Research Agendas," Revue de l'OFCE, Presses de Sciences-Po, vol. 97(5), pages 21-46.
    9. Alessandro Caiani, 2017. "Innovation Dynamics and Industry Structure Under Different Technological Spaces," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 3(3), pages 307-341, November.
    10. Gianluca Capone & Franco Malerba & Richard R. Nelson & Luigi Orsenigo & Sidney G. Winter, 2019. "History friendly models: retrospective and future perspectives," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 1-23, March.
    11. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
    12. Matthew Mitchell & Andrzej Skrzypacz, 2015. "A Theory of Market Pioneers, Dynamic Capabilities, and Industry Evolution," Management Science, INFORMS, vol. 61(7), pages 1598-1614, July.
    13. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    14. Uzunca, Bilgehan & Sharapov, Dmitry & Tee, Richard, 2022. "Governance rigidity, industry evolution, and value capture in platform ecosystems," Research Policy, Elsevier, vol. 51(7).
    15. Franco Malerba & Richard Nelson & Luigi Orsenigo & Sidney Winter, 2007. "Demand, innovation, and the dynamics of market structure: The role of experimental users and diverse preferences," Journal of Evolutionary Economics, Springer, vol. 17(4), pages 371-399, August.
    16. Thomas Grebel, 2011. "Innovation and Health," Books, Edward Elgar Publishing, number 14375.
    17. Jakub Growiec & Fabio Pammolli & Massimo Riccaboni, 2020. "Innovation and Corporate Dynamics: A Theoretical Framework," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(1), pages 1-45, March.
    18. Pier-Paolo Saviotti & Andreas Pyka¤ & Bogang Jun, 2020. "Diversification, structural change, and economic development," Journal of Evolutionary Economics, Springer, vol. 30(5), pages 1301-1335, November.
    19. Peili Yu & Junguo Shi & Bert M. Sadowski & Önder Nomaler, 2020. "Catching Up in the Face of Technological Discontinuity: Exploring the Role of Demand Structure and Technological Regimes in the Transition from 2G to 3G in China," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 815-841, July.
    20. Ron Martin & Peter Sunley, 2010. "The Place of Path Dependence in an Evolutionary Perspective on the Economic Landscape," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 3, Edward Elgar Publishing.

    More about this item

    Keywords

    Industrial dynamics; Innovation; Market structure; Pharmaceuticals; History-friendly model; C63; L10; L65; O30;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • L10 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - General
    • L65 - Industrial Organization - - Industry Studies: Manufacturing - - - Chemicals; Rubber; Drugs; Biotechnology; Plastics
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:22:y:2012:i:4:p:677-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.